DP Mathematics HL Questionbank

10.6
Description
[N/A]Directly related questions
- 18M.3dm.hl.TZ0.2b.i: Use Fermat’s little theorem to show that x≡ap−2b(modp).
- 18M.3dm.hl.TZ0.2a: State Fermat’s little theorem.
- 17N.3dm.hl.TZ0.2b: For every prime number p>3, show that p|up−1.
- 15N.3dm.hl.TZ0.3b: Hence, or otherwise, find the remainder when 19821982 is divided by 37.
- 12M.3dm.hl.TZ0.5b: Find 22003(mod11) and 22003(mod13).
- 12M.3dm.hl.TZ0.5a: Use the result 2003=6×333+5 and Fermat’s little theorem to show that...
- 12N.3dm.hl.TZ0.4a: State Fermat’s little theorem.
- 08M.3dm.hl.TZ2.3b: Show that x97−x+1≡0(mod97) has no solution.
- 08N.3dm.hl.TZ0.3c: Prove that 22|511+1711.
- 09M.3dm.hl.TZ0.5: (a) Using Fermat’s little theorem, show that, in base 10, the last digit of n is always equal...
- 09N.3dm.hl.TZ0.4b: The representation of the positive integer N in base p is denoted by (N)p . If...
- SPNone.3dm.hl.TZ0.3a: One version of Fermat’s little theorem states that, under certain conditions,...
- 10M.3dm.hl.TZ0.1a: (i) One version of Fermat’s little theorem states that, under certain...
- 10N.3dm.hl.TZ0.4: (a) Write down Fermat’s little theorem. (b) In base 5 the representation of a natural...
- 13M.3dm.hl.TZ0.5a: Show that p∑k=1kp≡0(modp).
- 13M.3dm.hl.TZ0.5b: Given that p∑k=1kp−1≡n(modp) where...
- 11N.3dm.hl.TZ0.5a: Use the above result to show that if p is prime then ap≡a(modp) where a is any...
- 11N.3dm.hl.TZ0.5c: (i) State the converse of the result in part (a). (ii) Show that this converse is not true.
- 11N.3dm.hl.TZ0.5b: Show that 2341≡2(mod341).
- 14N.3dm.hl.TZ0.1c: Explain why f(n) is always exactly divisible by 5.
- 14N.3dm.hl.TZ0.4b: Find the remainder when 4182 is divided by 11.
Sub sections and their related questions
Fermat’s little theorem.
- 12M.3dm.hl.TZ0.5a: Use the result 2003=6×333+5 and Fermat’s little theorem to show that...
- 12M.3dm.hl.TZ0.5b: Find 22003(mod11) and 22003(mod13).
- 12N.3dm.hl.TZ0.4a: State Fermat’s little theorem.
- 08M.3dm.hl.TZ2.3b: Show that x97−x+1≡0(mod97) has no solution.
- 08N.3dm.hl.TZ0.3c: Prove that 22|511+1711.
- 09M.3dm.hl.TZ0.5: (a) Using Fermat’s little theorem, show that, in base 10, the last digit of n is always equal...
- 09N.3dm.hl.TZ0.4b: The representation of the positive integer N in base p is denoted by (N)p . If...
- SPNone.3dm.hl.TZ0.3a: One version of Fermat’s little theorem states that, under certain conditions,...
- 10M.3dm.hl.TZ0.1a: (i) One version of Fermat’s little theorem states that, under certain...
- 10N.3dm.hl.TZ0.4: (a) Write down Fermat’s little theorem. (b) In base 5 the representation of a natural...
- 13M.3dm.hl.TZ0.5a: Show that p∑k=1kp≡0(modp).
- 13M.3dm.hl.TZ0.5b: Given that p∑k=1kp−1≡n(modp) where...
- 11N.3dm.hl.TZ0.5a: Use the above result to show that if p is prime then ap≡a(modp) where a is any...
- 11N.3dm.hl.TZ0.5b: Show that 2341≡2(mod341).
- 11N.3dm.hl.TZ0.5c: (i) State the converse of the result in part (a). (ii) Show that this converse is not true.
- 14N.3dm.hl.TZ0.1c: Explain why f(n) is always exactly divisible by 5.
- 14N.3dm.hl.TZ0.4b: Find the remainder when 4182 is divided by 11.
- 15N.3dm.hl.TZ0.3b: Hence, or otherwise, find the remainder when 19821982 is divided by 37.
- 17N.3dm.hl.TZ0.2b: For every prime number p>3, show that p|up−1.
- 18M.3dm.hl.TZ0.2a: State Fermat’s little theorem.
- 18M.3dm.hl.TZ0.2b.i: Use Fermat’s little theorem to show that x≡ap−2b(modp).