User interface language: English | Español

Date None Specimen Marks available 6 Reference code SPNone.3dm.hl.TZ0.3
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term Find, Show, and State Question number 3 Adapted from N/A

Question

One version of Fermat’s little theorem states that, under certain conditions, ap11(modp)ap11(modp) .

(i)     Show that this result is not true when a = 2, p = 9 and state which of the conditions is not satisfied.

(ii)     Find the smallest positive value of k satisfying the congruence 245k(mod9)245k(mod9) .

[6]
a.

Find all the integers between 100 and 200 satisfying the simultaneous congruences 3x4(mod5)3x4(mod5) and 5x6(mod7)5x6(mod7) .

[6]
b.

Markscheme

(i)     28=2564(mod9)28=2564(mod9) (so not true)     A1

9 is not prime     A1

 

(ii)     consider various powers of 2, e.g. obtaining     M1

26=641(mod9)     A1

therefore

245=(26)7×23     M1

8(mod9) (so k=8)     A1

[6 marks]

a.

EITHER

the solutions to 3x4(mod5) are 3, 8, 13, 18, 23,…     M1A1

the solutions to 5x6(mod7) are 4, 11, 18,…     A1

18 is therefore the smallest solution     A1

the general solution is

18+35n , nZ     M1

the required solutions are therefore 123, 158, 193     A1

OR

3x4(mod5)2×3x2×4(mod5)x3(mod5)     A1

x=3+5t     M1

15+25t6(mod7)4t5(mod7)2×4t2×5(mod7)t3(mod7)     A1

t=3+7n     A1

x=3+5(3+7n)=18+35n     M1

the required solutions are therefore 123, 158, 193     A1

OR

using the Chinese remainder theorem formula method

first convert the congruences to x3(mod5) and x4(mod7)     A1A1

M=35M1=7M2=5m1=5, m2=7, a1=3, a2=4

x1 is the solution of M2x21(modm1) , i.e. 7x11(mod5) so x1=3

x2 is the solution of M2x21(modm2) , i.e. 5x21(mod7) so x2=3

a solution is therefore

x=a1M1x1+a2M2x2     M1

=3×7×3+4×5×3=123     A1

the general solution is 123+35n , nZ     M1

the required solutions are therefore 123, 158, 193     A1

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.6 » Fermat’s little theorem.

View options