User interface language: English | Español

Date November 2017 Marks available 4 Reference code 17N.3dm.hl.TZ0.2
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term Show that Question number 2 Adapted from N/A

Question

Consider the recurrence relation

\({u_n} = 5{u_{n - 1}} - 6{u_{n - 2}},{\text{ }}{u_0} = 0\) and \({u_1} = 1\).

Find an expression for \({u_n}\) in terms of \(n\).

[6]
a.

For every prime number \(p > 3\), show that \(p|{u_{p - 1}}\).

[4]
b.

Markscheme

the auxiliary equation is \({\lambda ^2} - 5\lambda  + 6 = 0\)     M1

\( \Rightarrow \lambda  = 2,{\text{ }}3\)     (A1)

the general solution is \({u_n} = A \times {2^n} + B \times {3^n}\)     A1

imposing initial conditions (substituting \(n = 0,{\text{ }}1\))     M1

\(A + B = 0\) and \(2A + 3B = 1\)     A1

the solution is \(A =  - 1,{\text{ }}B = 1\)

so that \({u_n} = {3^n} - {2^n}\)     A1

[6 marks]

a.

\({u_{p - 1}} = {3^{p - 1}} - {2^{p - 1}}\)

\(p > 3\), therefore 3 or 2 are not divisible by \(p\)     R1

hence by FLT, \({3^{p - 1}} \equiv 1 \equiv {2^{p - 1}}(\bmod p)\) for \(p > 3\)     M1A1

\({u_{p - 1}} \equiv 0(\bmod p)\)     A1

\(p|{u_{p - 1}}\) for every prime number \(p > 3\)     AG

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.6 » Fermat’s little theorem.

View options