User interface language: English | Español

Date November 2011 Marks available 7 Reference code 11N.1.hl.TZ0.7
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 7 Adapted from N/A

Question

The graphs of \(f(x) = - {x^2} + 2\) and \(g(x) = {x^3} - {x^2} - bx + 2,{\text{ }}b > 0\), intersect and create two closed regions. Show that these two regions have equal areas.

 

Markscheme

to find the points of intersection of the two curves

\( - {x^2} + 2 = {x^3} - {x^2} - bx + 2\)     M1

\({x^3} - bx = x({x^2} - b) = 0\)

\( \Rightarrow x = 0;{\text{ }}x = \pm \sqrt b \)     A1A1

\({A_1} = \int_{ - \sqrt b }^0 {\left[ {({x^3} - {x^2} - bx + 2) - ( - {x^2} + 2)} \right]} {\text{d}}x\left( { = \int_{ - \sqrt b }^0 {({x^3} - bx){\text{d}}x} } \right)\)     M1

\( = \left[ {\frac{{{x^4}}}{4} - \frac{{b{x^2}}}{2}} \right]_{ - \sqrt b }^0\)

\( = - \left( {\frac{{{{( - \sqrt b )}^4}}}{4} - \frac{{b{{( - \sqrt b )}^2}}}{2}} \right) = - \frac{{{b^2}}}{4} + \frac{{{b^2}}}{2} = \frac{{{b^2}}}{4}\)     A1

\({A_2} = \int_0^{\sqrt b } {\left[ {( - {x^2} + 2) - ({x^3} - {x^2} - bx + 2)} \right]{\text{d}}x} \)     M1

\( = \int_0^{\sqrt b } {( - {x^3} + bx){\text{d}}x} \)

\( = \left[ { - \frac{{{x^4}}}{4} + \frac{{b{x^2}}}{2}} \right]_0^{\sqrt b } = \frac{{{b^2}}}{4}\)     A1

therefore \({A_1} = {A_2} = \frac{{{b^2}}}{4}\)     AG

[7 marks]

Examiners report

Most candidates knew how to tackle this question. The most common error was in giving +b and –b as the x-coordinates of the point of intersection.

Syllabus sections

Topic 6 - Core: Calculus » 6.5 » Area of the region enclosed by a curve and the \(x\)-axis or \(y\)-axis in a given interval; areas of regions enclosed by curves.
Show 31 related questions

View options