Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

User interface language: English | Español

Date May 2014 Marks available 6 Reference code 14M.1.hl.TZ2.13
Level HL only Paper 1 Time zone TZ2
Command term Find and Express Question number 13 Adapted from N/A

Question

The graph of the function f(x)=x+1x2+1 is shown below.


The point (1, 1) is a point of inflexion. There are two other points of inflexion.

Find f(x).

[2]
a.

Hence find the x-coordinates of the points where the gradient of the graph of f is zero.

[1]
b.

Find f(x) expressing your answer in the form p(x)(x2+1)3, where p(x) is a polynomial of degree 3.

[3]
c.

Find the x-coordinates of the other two points of inflexion.

[4]
d.

Find the area of the shaded region. Express your answer in the form πalnb, where a and b are integers.

[6]
e.

Markscheme

(a)     f(x)=(x2+1)2x(x+1)(x2+1)2 (=x22x+1(x2+1)2)     M1A1

[2 marks]

a.

x22x+1(x2+1)2=0

x=1±2     A1

[1 mark]

b.

f(x)=(2x2)(x2+1)22(2x)(x2+1)(x22x+1)(x2+1)4     A1A1

 

Note:     Award A1 for (2x2)(x2+1)2 or equivalent.

 

Note:     Award A1 for 2(2x)(x2+1)(x22x+1) or equivalent.

 

=(2x2)(x2+1)4x(x22x+1)(x2+1)3

=2x3+6x26x2(x2+1)3     A1

(=2(x3+3x23x1)(x2+1)3)

[3 marks]

c.

recognition that (x1) is a factor     (R1)

(x1)(x2+bx+c)=(x3+3x23x1)     M1

x2+4x+1=0     A1

x=2±3     A1

 

Note:     Allow long division / synthetic division.

 

[4 marks]

d.

01x+1x2+1dx     M1

x+1x2+1dx=xx2+1dx+1x2+1dx     M1

=12ln(x2+1)+arctan(x)     A1A1

=[12ln(x2+1)+arctan(x)]01=12ln1+arctan012ln2arctan(1)     M1

=π4ln2     A1

[6 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 6 - Core: Calculus » 6.5 » Area of the region enclosed by a curve and the x-axis or y-axis in a given interval; areas of regions enclosed by curves.
Show 31 related questions

View options