Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 7 Reference code 14M.1.hl.TZ1.11
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 11 Adapted from N/A

Question

Consider the function f(x)=lnxx, x>0.

The sketch below shows the graph of y= f(x) and its tangent at a point A.


Show that f(x)=1lnxx2.

[2]
a.

Find the coordinates of B, at which the curve reaches its maximum value.

[3]
b.

Find the coordinates of C, the point of inflexion on the curve.

[5]
c.

The graph of y= f(x) crosses the x-axis at the point A.

Find the equation of the tangent to the graph of f at the point A.

[4]
d.

The graph of y= f(x) crosses the x-axis at the point A.

Find the area enclosed by the curve y=f(x), the tangent at A, and the line x=e.

[7]
e.

Markscheme

f(x)=x×1xlnxx2     M1A1

=1lnxx2     AG

[2 marks]

a.

1lnxx2=0 has solution x=e     M1A1

y=1e     A1

hence maximum at the point (e, 1e)

[3 marks]

b.

f     M1A1

= \frac{{2\ln x - 3}}{{{x^3}}}

 

Note:     The M1A1 should be awarded if the correct working appears in part (b).

 

point of inflexion where f''(x) = 0     M1

so x = {{\text{e}}^{\frac{3}{2}}},{\text{ }}y = \frac{3}{2}{{\text{e}}^{\frac{{ - 3}}{2}}}     A1A1

C has coordinates \left( {{{\text{e}}^{\frac{3}{2}}},{\text{ }}\frac{3}{2}{{\text{e}}^{\frac{{ - 3}}{2}}}} \right)

[5 marks]

c.

f(1) = 0     A1

f'(1) = 1     (A1)

y = x + c     (M1)

through (1, 0)

equation is y = x - 1     A1

[4 marks]

d.

METHOD 1

area = \int_1^{\text{e}} {x - 1 - \frac{{\ln x}}{x}{\text{d}}x}     M1A1A1

 

Note:     Award M1 for integration of difference between line and curve, A1 for correct limits, A1 for correct expressions in either order.

 

\int {\frac{{\ln x}}{x}{\text{d}}x = \frac{{{{(\ln x)}^2}}}{2}} ( + c)     (M1)A1

\int {(x - 1){\text{d}}x = \frac{{{x^2}}}{2} - x( + c)}     A1

= \left[ {\frac{1}{2}{x^2} - x - \frac{1}{2}{{(\ln x)}^2}} \right]_1^{\text{e}}

= \left( {\frac{1}{2}{{\text{e}}^2} - {\text{e}} - \frac{1}{2}} \right) - \left( {\frac{1}{2} - 1} \right)

= \frac{1}{2}{{\text{e}}^2} - {\text{e}}     A1

METHOD 2

area = area of triangle - \int_1^e {\frac{{\ln x}}{x}{\text{d}}x}     M1A1

 

Note:     A1 is for correct integral with limits and is dependent on the M1.

 

\int {\frac{{\ln x}}{x}{\text{d}}x = \frac{{{{(\ln x)}^2}}}{2}( + c)}     (M1)A1

area of triangle = \frac{1}{2}(e - 1)(e - 1)     M1A1

\frac{1}{2}(e - 1)(e - 1) - \left( {\frac{1}{2}} \right) = \frac{1}{2}{{\text{e}}^2} - {\text{e}}     A1

[7 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 6 - Core: Calculus » 6.5 » Area of the region enclosed by a curve and the x-axis or y-axis in a given interval; areas of regions enclosed by curves.
Show 31 related questions

View options