Date | May 2017 | Marks available | 2 | Reference code | 17M.2.hl.TZ1.4 |
Level | HL only | Paper | 2 | Time zone | TZ1 |
Command term | Calculate | Question number | 4 | Adapted from | N/A |
Question
The region \(A\) is enclosed by the graph of \(y = 2\arcsin (x - 1) - \frac{\pi }{4}\), the \(y\)-axis and the line \(y = \frac{\pi }{4}\).
Write down a definite integral to represent the area of \(A\).
Calculate the area of \(A\).
Markscheme
METHOD 1
\(2\arcsin (x - 1) - \frac{\pi }{4} = \frac{\pi }{4}\) (M1)
\(x = 1 + \frac{1}{{\sqrt 2 }}\,\,\,( = 1.707 \ldots )\) (A1)
\(\int\limits_0^{1 + \frac{1}{{\sqrt 2 }}} {\frac{\pi }{4} - \left( {2\arcsin \left( {x - 1} \right) - \frac{\pi }{4}} \right)dx} \) M1A1
Note: Award M1 for an attempt to find the difference between two functions, A1 for all correct.
METHOD 2
when \(x = 0,{\text{ }}y = \frac{{ - 5\pi }}{4}\,\,\,( = - 3.93)\) A1
\(x = 1 + \sin \left( {\frac{{4y + \pi }}{8}} \right)\) M1A1
Note: Award M1 for an attempt to find the inverse function.
\(\int_{\frac{{ - 5\pi }}{4}}^{\frac{\pi }{4}} {\left( {1 + \sin \left( {\frac{{4y + \pi }}{8}} \right)} \right){\text{d}}y} \) A1
METHOD 3
\(\int_0^{1.38...} {\left( {2\arcsin \left( {x - 1} \right) - \frac{\pi }{4}} \right){\text{d}}x} \left| + \right.\int\limits_0^{1.71...} {\frac{\pi }{4}{\text{d}}x - \int\limits_{1.38...}^{1.71...} {\left( {2\arcsin \left( {x - 1} \right) - \frac{\pi }{4}} \right)dx} } \) M1A1A1A1
Note: Award M1 for considering the area below the \(x\)-axis and above the \(x\)-axis and A1 for each correct integral.
[4 marks]
\({\text{area}} = 3.30{\text{ (square units)}}\) A2
[2 marks]