User interface language: English | Español

Date May 2013 Marks available 6 Reference code 13M.1.hl.TZ1.8
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 8 Adapted from N/A

Question

The first terms of an arithmetic sequence are \(\frac{1}{{{{\log }_2}x}},{\text{ }}\frac{1}{{{{\log }_8}x}},{\text{ }}\frac{1}{{{{\log }_{32}}x}},{\text{ }}\frac{1}{{{{\log }_{128}}x}},{\text{ }} \ldots \)

Find x if the sum of the first 20 terms of the sequence is equal to 100.

Markscheme

METHOD 1

\(d = \frac{1}{{{{\log }_8}x}} - \frac{1}{{{{\log }_2}x}}\)     (M1)

\( = \frac{{{{\log }_2}8}}{{{{\log }_2}x}} - \frac{1}{{{{\log }_2}x}}\)     (M1)

Note: Award this M1 for a correct change of base anywhere in the question.

 

\( = \frac{2}{{{{\log }_2}x}}\)     (A1)

\(\frac{{20}}{2}\left( {2 \times \frac{1}{{{{\log }_2}x}} + 19 \times \frac{2}{{{{\log }_2}x}}} \right)\)     M1

\( = \frac{{400}}{{{{\log }_2}x}}\)     (A1)

\(100 = \frac{{400}}{{{{\log }_2}x}}\)

\({\log _2}x = 4 \Rightarrow x = {2^4} = 16\)     A1

 

METHOD 2

\({20^{{\text{th}}}}{\text{ term}} = \frac{1}{{{{\log }_{{2^{39}}}}x}}\)     A1

\(100 = \frac{{20}}{2}\left( {\frac{1}{{{{\log }_2}x}} + \frac{1}{{{{\log }_{{2^{39}}}}x}}} \right)\)     M1

\(100 = \frac{{20}}{2}\left( {\frac{1}{{{{\log }_2}x}} + \frac{{{{\log }_2}{2^{39}}}}{{{{\log }_2}x}}} \right)\)     M1(A1)

Note: Award this M1 for a correct change of base anywhere in the question.

 

\(100 = \frac{{400}}{{{{\log }_2}x}}\)     (A1)

\({\log _2}x = 4 \Rightarrow x = {2^4} = 16\)     A1

 

METHOD 3

\(\frac{1}{{{{\log }_2}x}} + \frac{1}{{{{\log }_8}x}} + \frac{1}{{{{\log }_{32}}x}} + \frac{1}{{{{\log }_{128}}x}} +  \ldots \)

\(\frac{1}{{{{\log }_2}x}} + \frac{{{{\log }_2}8}}{{{{\log }_2}x}} + \frac{{{{\log }_2}32}}{{{{\log }_2}x}} + \frac{{{{\log }_2}128}}{{{{\log }_2}x}} +  \ldots \)     (M1)(A1)

Note: Award this M1 for a correct change of base anywhere in the question.

 

\( = \frac{1}{{{{\log }_2}x}}(1 + 3 + 5 +  \ldots )\)     A1

\( = \frac{1}{{{{\log }_2}x}}\left( {\frac{{20}}{2}(2 + 38)} \right)\)     (M1)(A1)

\(100 = \frac{{400}}{{{{\log }_2}x}}\)

\({\log _2}x = 4 \Rightarrow x = {2^4} = 16\)     A1

 

[6 marks]

Examiners report

There were plenty of good answers to this question. Those who realised they needed to make each log have the same base (and a great variety of bases were chosen) managed the question successfully.

Syllabus sections

Topic 1 - Core: Algebra » 1.1 » Arithmetic sequences and series; sum of finite arithmetic series; geometric sequences and series; sum of finite and infinite geometric series.
Show 58 related questions

View options