Date | November 2014 | Marks available | 5 | Reference code | 14N.1.hl.TZ0.3 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 3 | Adapted from | N/A |
Question
A point \(P\), relative to an origin \(O\), has position vector \(\overrightarrow {{\text{OP}}} = \left( {\begin{array}{*{20}{c}} {1 + s} \\ {3 + 2s} \\ {1 - s} \end{array}} \right),{\text{ }}s \in \mathbb{R}\).
Find the minimum length of \(\overrightarrow {{\text{OP}}} \).
Markscheme
METHOD 1
\(\left| {\overrightarrow {{\text{OP}}} } \right| = \sqrt {{{(1 + s)}^2} + {{(3 + 2s)}^2} + {{(1 - s)}^2}} \;\;\;\left( { = \sqrt {6{s^2} + 12s + 11} } \right)\) A1
Note: Award A1 if the square of the distance is found.
EITHER
attempt to differentiate: \(\frac{{\text{d}}}{{{\text{d}}s}}{\left| {\overrightarrow {{\text{OP}}} } \right|^2}\;\;\;( = 12s + 12)\) M1
attempting to solve \(\frac{{\text{d}}}{{{\text{d}}s}}{\left| {\overrightarrow {{\text{OP}}} } \right|^2} = 0\;\;\;{\text{for }}s\) (M1)
\(s = - 1\) (A1)
OR
attempt to differentiate: \(\frac{{\text{d}}}{{{\text{d}}s}}\left| {\overrightarrow {{\text{OP}}} } \right|\;\;\;\left( { = \frac{{6s + 6}}{{\sqrt {6{s^2} + 12s + 11} }}} \right)\) M1
attempting to solve \(\frac{{\text{d}}}{{{\text{d}}s}}\left| {\overrightarrow {{\text{OP}}} } \right| = 0\;\;\;{\text{for }}s\) (M1)
\(s = - 1\) (A1)
OR
attempt at completing the square: \(\left( {{{\left| {\overrightarrow {{\text{OP}}} } \right|}^2} = 6{{(s + 1)}^2} + 5} \right)\) M1
minimum value (M1)
occurs at \(s = - 1\) (A1)
THEN
the minimum length of \(\overrightarrow {{\text{OP}}} \) is \(\sqrt 5 \) A1
METHOD 2
the length of \(\overrightarrow {{\text{OP}}} \) is a minimum when \(\overrightarrow {{\text{OP}}} \) is perpendicular to \(\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right)\) (R1)
\(\left( {\begin{array}{*{20}{c}} {1 + s} \\ {3 + 2s} \\ {1 - s} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right) = 0\) A1
attempting to solve \(1 + s + 6 + 4s - 1 + s = 0\;\;\;(6s + 6 = 0)\;\;\;{\text{for }}s\) (M1)
\(s = - 1\) (A1)
\(\left| {\overrightarrow {{\text{OP}}} } \right| = \sqrt 5 \) (A1)
[5 marks]
Examiners report
Generally well done. But there was a significant minority who didn’t realise that they had to use calculus or completion of squares to minimise the length. Trying random values of \(s\) gained no marks. A number of candidates wasted time showing that their answer gave a minimum rather than a maximum value of the length.