Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2008 Marks available 18 Reference code 08M.1.hl.TZ2.13
Level HL only Paper 1 Time zone TZ2
Command term Find, Show that, Solve, Determine, and Hence Question number 13 Adapted from N/A

Question

André wants to get from point A located in the sea to point Y located on a straight stretch of beach. P is the point on the beach nearest to A such that AP = 2 km and PY = 2 km. He does this by swimming in a straight line to a point Q located on the beach and then running to Y.

 

 

When André swims he covers 1 km in 55 minutes. When he runs he covers 1 km in 5 minutes.

(a)     If PQ = x km, 0 , find an expression for the time T minutes taken by André to reach point Y.

(b)     Show that \frac{{{\text{d}}T}}{{{\text{d}}x}} = \frac{{5\sqrt 5 x}}{{\sqrt {{x^2} + 4} }} - 5.

(c)     (i)     Solve \frac{{{\text{d}}T}}{{{\text{d}}x}} = 0.

(ii)     Use the value of x found in part (c) (i) to determine the time, T minutes, taken for André to reach point Y.

(iii)     Show that \frac{{{{\text{d}}^2}T}}{{{\text{d}}{x^2}}} = \frac{{20\sqrt 5 }}{{{{({x^2} + 4)}^{\frac{3}{2}}}}} and hence show that the time found in part (c) (ii) is a minimum.

Markscheme

(a)     {\text{AQ}} = \sqrt {{x^2} + 4} {\text{ (km)}}     (A1)

{\text{QY}} = (2 - x){\text{ (km)}}     (A1)

T = 5\sqrt 5 {\text{AQ}} + 5{\text{QY}}     (M1)

{\text{ = 5}}\sqrt 5 \sqrt {({x^2} + 4)} + 5(2 - x){\text{ (mins)}}     A1

[4 marks]

 

(b)     Attempting to use the chain rule on {\text{5}}\sqrt 5 \sqrt {({x^2} + 4)}     (M1)

\frac{{\text{d}}}{{{\text{d}}x}}\left( {{\text{5}}\sqrt 5 \sqrt {({x^2} + 4)} } \right) = 5\sqrt 5 \times \frac{1}{2}{({x^2} + 4)^{ - \frac{1}{2}}} \times 2x     A1

\left( { = \frac{{5\sqrt 5 x}}{{\sqrt {{x^2} + 4} }}} \right)

\frac{{\text{d}}}{{{\text{d}}x}}\left( {5(2 - x)} \right) = - 5     A1

\frac{{{\text{d}}T}}{{{\text{d}}x}} = \frac{{5\sqrt 5 x}}{{\sqrt {{x^2} + 4} }} - 5     AG     N0

[3 marks]

 

(c)     (i)     \sqrt 5 x = \sqrt {{x^2} + 4}     A1

Squaring both sides and rearranging to obtain 5{x^2} = {x^2} + 4     M1

x = 1     A1     N1

Note: Do not award the final A1 for stating a negative solution in final answer.

 

(ii)     T = 5\sqrt 5 \sqrt {1 + 4}  + 5(2 - 1)     M1

= 30 (mins)     A1     N1

Note: Allow FT on incorrect x value.

 

(iii)     METHOD 1

Attempting to use the quotient rule     M1

u = x{\text{ , }}v = \sqrt {{x^2} + 4} {\text{, }}\frac{{{\text{d}}u}}{{{\text{d}}x}} = 1{\text{ and }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = x{({x^2} + 4)^{ - 1/2}}     (A1)

\frac{{{{\text{d}}^2}T}}{{{\text{d}}{x^2}}} = 5\sqrt 5 \left[ {\frac{{\sqrt {{x^2} + 4} - \frac{1}{2}{{({x^2} + 4)}^{ - 1/2}} \times 2{x^2}}}{{({x^2} + 4)}}} \right]     A1

Attempt to simplify     (M1)

= \frac{{5\sqrt 5 }}{{{{({x^2} + 4)}^{3/2}}}}[{x^2} + 4 - {x^2}]\,\,\,\,\,or equivalent     A1

= \frac{{20\sqrt 5 }}{{{{({x^2} + 4)}^{3/2}}}}     AG

When x = 1{\text{ , }}\frac{{20\sqrt 5 }}{{{{({x^2} + 4)}^{3/2}}}} > 0 and hence T = 30 is a minimum     R1     N0

Note: Allow FT on incorrect x value, 0 \leqslant x \leqslant 2.

 

METHOD 2

Attempting to use the product rule     M1

u = x{\text{ , }}v = \sqrt {{x^2} + 4} {\text{, }}\frac{{{\text{d}}u}}{{{\text{d}}x}} = 1{\text{ and }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = x{({x^2} + 4)^{ - 1/2}}     (A1)

\frac{{{{\text{d}}^2}T}}{{{\text{d}}{x^2}}} = 5\sqrt 5 {({x^2} + 4)^{ - 1/2}} - \frac{{5\sqrt 5 x}}{2}{({x^2} + 4)^{ - 3/2}} \times 2x     A1

\left( { = \frac{{5\sqrt 5 }}{{{{({x^2} + 4)}^{1/2}}}} - \frac{{5\sqrt 5 {x^2}}}{{{{({x^2} + 4)}^{3/2}}}}} \right)

Attempt to simplify     (M1)

= \frac{{5\sqrt 5 ({x^2} + 4) - 5\sqrt 5 {x^2}}}{{{{({x^2} + 4)}^{3/2}}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( { = \frac{{5\sqrt 5 ({x^2} + 4 - {x^2})}}{{{{({x^2} + 4)}^{3/2}}}}} \right)     A1

= \frac{{20\sqrt 5 }}{{{{({x^2} + 4)}^{3/2}}}}     AG

When x = 1{\text{ , }}\frac{{20\sqrt 5 }}{{{{({x^2} + 4)}^{3/2}}}} > 0 and hence T = 30 is a minimum     R1     N0

Note: Allow FT on incorrect x value, 0 \leqslant x \leqslant 2.

 

[11 marks]

Total [18 marks]

Examiners report

Most candidates scored well on this question. The question tested their competence at algebraic manipulation and differentiation. A few candidates failed to extract from the context the correct relationship between velocity, distance and time.

Syllabus sections

Topic 6 - Core: Calculus » 6.3 » Optimization problems.

View options