User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.1.hl.TZ2.10
Level HL only Paper 1 Time zone TZ2
Command term Show that Question number 10 Adapted from N/A

Question

A window is made in the shape of a rectangle with a semicircle of radius \(r\) metres on top, as shown in the diagram. The perimeter of the window is a constant P metres.

M17/5/MATHL/HP1/ENG/TZ2/10

Find the area of the window in terms of P and \(r\).

[4]
a.i.

Find the width of the window in terms of P when the area is a maximum, justifying that this is a maximum.

[5]
a.ii.

Show that in this case the height of the rectangle is equal to the radius of the semicircle.

[2]
b.

Markscheme

the width of the rectangle is \(2r\) and let the height of the rectangle be \(h\)

\(P = 2r + 2h + \pi r\)     (A1)

\(A = 2rh + \frac{{\pi {r^2}}}{2}\)     (A1)

\(h = \frac{{{\text{P}} - 2r - \pi r}}{2}\)

\(A = 2r\left( {\frac{{{\text{P}} - 2r - \pi r}}{2}} \right) + \frac{{\pi {r^2}}}{2}\,\,\,\left( { = \operatorname{P} r - 2{r^2} - \frac{{\pi {r^2}}}{2}} \right)\)     M1A1

[4 marks]

a.i.

\(\frac{{{\text{d}}A}}{{{\text{d}}r}} = {\text{P}} - 4r - \pi r\)     A1

\(\frac{{{\text{d}}A}}{{{\text{d}}r}} = 0\)     M1

\( \Rightarrow r = \frac{{\text{P}}}{{4 + \pi }}\)     (A1)

hence the width is \(\frac{{2{\text{P}}}}{{4 + \pi }}\)     A1

\(\frac{{{{\text{d}}^2}A}}{{{\text{d}}{r^2}}} = - 4 - \pi < 0\)     R1

hence maximum     AG

[5 marks]

a.ii.

EITHER

\(h = \frac{{{\text{P}} - 2r - \pi r}}{2}\)

\(h = \frac{{{\text{P}} - \frac{{2{\text{P}}}}{{4 + \pi }} - \frac{{{\text{P}}\pi }}{{4 + \pi }}}}{2}\)     M1

\(h = \frac{{4{\text{P}} + \pi {\text{P}} - 2{\text{P}} - \pi {\text{P}}}}{{2(4 + \pi )}}\)    A1

\(h = \frac{{\text{P}}}{{(4 + \pi )}} = r\)     AG

OR

\(h = \frac{{{\text{P}} - 2r - \pi r}}{2}\)

\(P = r(4 + \pi )\)     M1

\(h = \frac{{r(4 + \pi ) - 2r - \pi r}}{2}\)     A1

\(h = \frac{{4r + \pi r - 2r - \pi r}}{2} = r\)     AG

[2 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.3 » Optimization problems.

View options