Date | May 2017 | Marks available | 2 | Reference code | 17M.1.hl.TZ2.10 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Show that | Question number | 10 | Adapted from | N/A |
Question
A window is made in the shape of a rectangle with a semicircle of radius \(r\) metres on top, as shown in the diagram. The perimeter of the window is a constant P metres.
Find the area of the window in terms of P and \(r\).
Find the width of the window in terms of P when the area is a maximum, justifying that this is a maximum.
Show that in this case the height of the rectangle is equal to the radius of the semicircle.
Markscheme
the width of the rectangle is \(2r\) and let the height of the rectangle be \(h\)
\(P = 2r + 2h + \pi r\) (A1)
\(A = 2rh + \frac{{\pi {r^2}}}{2}\) (A1)
\(h = \frac{{{\text{P}} - 2r - \pi r}}{2}\)
\(A = 2r\left( {\frac{{{\text{P}} - 2r - \pi r}}{2}} \right) + \frac{{\pi {r^2}}}{2}\,\,\,\left( { = \operatorname{P} r - 2{r^2} - \frac{{\pi {r^2}}}{2}} \right)\) M1A1
[4 marks]
\(\frac{{{\text{d}}A}}{{{\text{d}}r}} = {\text{P}} - 4r - \pi r\) A1
\(\frac{{{\text{d}}A}}{{{\text{d}}r}} = 0\) M1
\( \Rightarrow r = \frac{{\text{P}}}{{4 + \pi }}\) (A1)
hence the width is \(\frac{{2{\text{P}}}}{{4 + \pi }}\) A1
\(\frac{{{{\text{d}}^2}A}}{{{\text{d}}{r^2}}} = - 4 - \pi < 0\) R1
hence maximum AG
[5 marks]
EITHER
\(h = \frac{{{\text{P}} - 2r - \pi r}}{2}\)
\(h = \frac{{{\text{P}} - \frac{{2{\text{P}}}}{{4 + \pi }} - \frac{{{\text{P}}\pi }}{{4 + \pi }}}}{2}\) M1
\(h = \frac{{4{\text{P}} + \pi {\text{P}} - 2{\text{P}} - \pi {\text{P}}}}{{2(4 + \pi )}}\) A1
\(h = \frac{{\text{P}}}{{(4 + \pi )}} = r\) AG
OR
\(h = \frac{{{\text{P}} - 2r - \pi r}}{2}\)
\(P = r(4 + \pi )\) M1
\(h = \frac{{r(4 + \pi ) - 2r - \pi r}}{2}\) A1
\(h = \frac{{4r + \pi r - 2r - \pi r}}{2} = r\) AG
[2 marks]