Date | May 2017 | Marks available | 4 | Reference code | 17M.1.hl.TZ2.10 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Find | Question number | 10 | Adapted from | N/A |
Question
A window is made in the shape of a rectangle with a semicircle of radius r metres on top, as shown in the diagram. The perimeter of the window is a constant P metres.
Find the area of the window in terms of P and r.
Find the width of the window in terms of P when the area is a maximum, justifying that this is a maximum.
Show that in this case the height of the rectangle is equal to the radius of the semicircle.
Markscheme
the width of the rectangle is 2r and let the height of the rectangle be h
P=2r+2h+πr (A1)
A=2rh+πr22 (A1)
h=P−2r−πr2
A=2r(P−2r−πr2)+πr22(=Pr−2r2−πr22) M1A1
[4 marks]
dAdr=P−4r−πr A1
dAdr=0 M1
⇒r=P4+π (A1)
hence the width is 2P4+π A1
d2Adr2=−4−π<0 R1
hence maximum AG
[5 marks]
EITHER
h=P−2r−πr2
h=P−2P4+π−Pπ4+π2 M1
h=4P+πP−2P−πP2(4+π) A1
h=P(4+π)=r AG
OR
h=P−2r−πr2
P=r(4+π) M1
h=r(4+π)−2r−πr2 A1
h=4r+πr−2r−πr2=r AG
[2 marks]