Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2017 Marks available 4 Reference code 17M.1.hl.TZ2.10
Level HL only Paper 1 Time zone TZ2
Command term Find Question number 10 Adapted from N/A

Question

A window is made in the shape of a rectangle with a semicircle of radius r metres on top, as shown in the diagram. The perimeter of the window is a constant P metres.

M17/5/MATHL/HP1/ENG/TZ2/10

Find the area of the window in terms of P and r.

[4]
a.i.

Find the width of the window in terms of P when the area is a maximum, justifying that this is a maximum.

[5]
a.ii.

Show that in this case the height of the rectangle is equal to the radius of the semicircle.

[2]
b.

Markscheme

the width of the rectangle is 2r and let the height of the rectangle be h

P=2r+2h+πr     (A1)

A=2rh+πr22     (A1)

h=P2rπr2

A=2r(P2rπr2)+πr22(=Pr2r2πr22)     M1A1

[4 marks]

a.i.

dAdr=P4rπr     A1

dAdr=0     M1

r=P4+π     (A1)

hence the width is 2P4+π     A1

d2Adr2=4π<0     R1

hence maximum     AG

[5 marks]

a.ii.

EITHER

h=P2rπr2

h=P2P4+πPπ4+π2     M1

h=4P+πP2PπP2(4+π)    A1

h=P(4+π)=r     AG

OR

h=P2rπr2

P=r(4+π)     M1

h=r(4+π)2rπr2     A1

h=4r+πr2rπr2=r     AG

[2 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.3 » Optimization problems.

View options