User interface language: English | Español

Date May 2008 Marks available 6 Reference code 08M.1.hl.TZ1.10
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 10 Adapted from N/A

Question

The region bounded by the curve \(y = \frac{{\ln (x)}}{x}\) and the lines x = 1, x = e, y = 0 is rotated through \(2\pi \) radians about the x-axis.

Find the volume of the solid generated.

Markscheme

METHOD 1

\(V = \pi \int_1^{\text{e}} {{{\left( {\frac{{\ln x}}{x}} \right)}^2}{\text{d}}x} \)     M1

Integrating by parts:

\(u = {(\ln x)^2},{\text{ }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{1}{{{x^2}}}\)     (M1)

\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{{2\ln x}}{x},{\text{ }}v = - \frac{1}{x}\)

\( \Rightarrow V = \pi \left( { - \frac{{{{(\ln x)}^2}}}{x} + 2\int {\frac{{\ln x}}{{{x^2}}}{\text{d}}x} } \right)\)     A1

\(u = \ln x,{\text{ }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{1}{{{x^2}}}\)     (M1)

\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x},{\text{ }}v = - \frac{1}{x}\)

\(\therefore \int {\frac{{\ln x}}{{{x^2}}}{\text{d}}x = - \frac{{\ln x}}{x} + \int {\frac{1}{{{x^2}}}{\text{d}}x = - \frac{{\ln x}}{x} - \frac{1}{x}} } \)     A1

\(\therefore V = \pi \left[ { - \frac{{{{(\ln x)}^2}}}{x} + 2\left( { - \frac{{\ln x}}{x} - \frac{1}{x}} \right)} \right]_1^{\text{e}}\)

\( = 2\pi - \frac{{5\pi }}{e}\)     A1

[6 marks]

METHOD 2

\(V = \pi \int_1^{\text{e}} {{{\left( {\frac{{\ln x}}{x}} \right)}^2}{\text{d}}x} \)     M1

Let \(\ln x = u \Rightarrow x = {{\text{e}}^u},{\text{ }}\frac{{{\text{d}}x}}{x} = {\text{d}}u\)     (M1)

\(\int {{{\left( {\frac{{\ln x}}{x}} \right)}^2}{\text{d}}x = \int {\frac{{{u^2}}}{{{{\text{e}}^u}}}{\text{d}}u = \int {{{\text{e}}^{ - u}}} {u^2}{\text{d}}u = - {{\text{e}}^{ - u}}{u^2} + 2\int {{{\text{e}}^{ - u}}u{\text{d}}u} } } \)     A1

\( = - {{\text{e}}^{ - u}}{u^2} + 2\left( { - {{\text{e}}^{ - u}}u + \int {{{\text{e}}^{ - u}}{\text{d}}u} } \right) = - {{\text{e}}^{ - u}}{u^2} - 2{{\text{e}}^{ - u}}u - 2{{\text{e}}^{ - u}}\)

\( = - {{\text{e}}^{ - u}}({u^2} + 2u + 2)\)     A1

When x = e, u = 1. When x = 1, u = 0 .

\(\therefore {\text{ Volume}} = \pi \left[ { - {{\text{e}}^{ - u}}({u^2} + 2u + 2)} \right]_0^1\)     M1

\( = \pi ( - 5{{\text{e}}^{ - 1}} + 2){\text{ }}\left( { = 2\pi  - \frac{{5\pi }}{{\text{e}}}} \right)\)     A1

[6 marks]

Examiners report

Only the best candidates were able to make significant progress with this question. It was disappointing to see that many candidates could not state that the formula for the required volume was \(\pi \int_1^e {{{\left( {\frac{{\ln x}}{x}} \right)}^2}{\text{d}}x} \) . Of those who could, very few either attempted integration by parts or used an appropriate substitution.

Syllabus sections

Topic 6 - Core: Calculus » 6.5 » Volumes of revolution about the \(x\)-axis or \(y\)-axis.
Show 23 related questions

View options