Date | May 2008 | Marks available | 6 | Reference code | 08M.1.hl.TZ1.10 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Find | Question number | 10 | Adapted from | N/A |
Question
The region bounded by the curve \(y = \frac{{\ln (x)}}{x}\) and the lines x = 1, x = e, y = 0 is rotated through \(2\pi \) radians about the x-axis.
Find the volume of the solid generated.
Markscheme
METHOD 1
\(V = \pi \int_1^{\text{e}} {{{\left( {\frac{{\ln x}}{x}} \right)}^2}{\text{d}}x} \) M1
Integrating by parts:
\(u = {(\ln x)^2},{\text{ }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{1}{{{x^2}}}\) (M1)
\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{{2\ln x}}{x},{\text{ }}v = - \frac{1}{x}\)
\( \Rightarrow V = \pi \left( { - \frac{{{{(\ln x)}^2}}}{x} + 2\int {\frac{{\ln x}}{{{x^2}}}{\text{d}}x} } \right)\) A1
\(u = \ln x,{\text{ }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{1}{{{x^2}}}\) (M1)
\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x},{\text{ }}v = - \frac{1}{x}\)
\(\therefore \int {\frac{{\ln x}}{{{x^2}}}{\text{d}}x = - \frac{{\ln x}}{x} + \int {\frac{1}{{{x^2}}}{\text{d}}x = - \frac{{\ln x}}{x} - \frac{1}{x}} } \) A1
\(\therefore V = \pi \left[ { - \frac{{{{(\ln x)}^2}}}{x} + 2\left( { - \frac{{\ln x}}{x} - \frac{1}{x}} \right)} \right]_1^{\text{e}}\)
\( = 2\pi - \frac{{5\pi }}{e}\) A1
[6 marks]
METHOD 2
\(V = \pi \int_1^{\text{e}} {{{\left( {\frac{{\ln x}}{x}} \right)}^2}{\text{d}}x} \) M1
Let \(\ln x = u \Rightarrow x = {{\text{e}}^u},{\text{ }}\frac{{{\text{d}}x}}{x} = {\text{d}}u\) (M1)
\(\int {{{\left( {\frac{{\ln x}}{x}} \right)}^2}{\text{d}}x = \int {\frac{{{u^2}}}{{{{\text{e}}^u}}}{\text{d}}u = \int {{{\text{e}}^{ - u}}} {u^2}{\text{d}}u = - {{\text{e}}^{ - u}}{u^2} + 2\int {{{\text{e}}^{ - u}}u{\text{d}}u} } } \) A1
\( = - {{\text{e}}^{ - u}}{u^2} + 2\left( { - {{\text{e}}^{ - u}}u + \int {{{\text{e}}^{ - u}}{\text{d}}u} } \right) = - {{\text{e}}^{ - u}}{u^2} - 2{{\text{e}}^{ - u}}u - 2{{\text{e}}^{ - u}}\)
\( = - {{\text{e}}^{ - u}}({u^2} + 2u + 2)\) A1
When x = e, u = 1. When x = 1, u = 0 .
\(\therefore {\text{ Volume}} = \pi \left[ { - {{\text{e}}^{ - u}}({u^2} + 2u + 2)} \right]_0^1\) M1
\( = \pi ( - 5{{\text{e}}^{ - 1}} + 2){\text{ }}\left( { = 2\pi - \frac{{5\pi }}{{\text{e}}}} \right)\) A1
[6 marks]
Examiners report
Only the best candidates were able to make significant progress with this question. It was disappointing to see that many candidates could not state that the formula for the required volume was \(\pi \int_1^e {{{\left( {\frac{{\ln x}}{x}} \right)}^2}{\text{d}}x} \) . Of those who could, very few either attempted integration by parts or used an appropriate substitution.