User interface language: English | Español

Date May 2014 Marks available 5 Reference code 14M.2.hl.TZ1.5
Level HL only Paper 2 Time zone TZ1
Command term Find and Write down Question number 5 Adapted from N/A

Question

The shaded region S is enclosed between the curve \(y = x + 2\cos x\), for \(0 \leqslant x \leqslant 2\pi \), and the line \(y = x\), as shown in the diagram below.


Find the coordinates of the points where the line meets the curve.

[3]
a.

The region \(S\) is rotated by \(2\pi \) about the \(x\)-axis to generate a solid.

(i)     Write down an integral that represents the volume \(V\) of the solid.

(ii)     Find the volume \(V\).

[5]
b.

Markscheme

(a)     \(\frac{\pi }{2}(1.57),{\text{ }}\frac{{3\pi }}{2}(4.71)\)     A1A1

hence the coordinates are \(\left( {\frac{\pi }{2},{\text{ }}\frac{\pi }{2}} \right),{\text{ }}\left( {\frac{{3\pi }}{2},{\text{ }}\frac{{3\pi }}{2}} \right)\)     A1

[3 marks]

a.

(i)     \(\pi \int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( {{x^2} - {{(x + 2\cos x)}^2}} \right){\text{d}}x} \)     A1A1A1

 

Note:     Award A1 for \({x^2} - {(x + 2\cos x)^2}\), A1 for correct limits and A1 for \(\pi \).

 

(ii)     \(6{\pi ^2}{\text{ }}( = 59.2)\)     A2

 

Notes:     Do not award ft from (b)(i).

 

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.5 » Volumes of revolution about the \(x\)-axis or \(y\)-axis.
Show 23 related questions

View options