Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 5 Reference code 18M.3sp.hl.TZ0.5
Level HL only Paper Paper 3 Statistics and probability Time zone TZ0
Command term Show that Question number 5 Adapted from N/A

Question

The random variable X has a binomial distribution with parameters n and p.

Let U=nP(1P).

Show that P=Xn is an unbiased estimator of p.

[2]
a.

Show that E(U)=(n1)p(1p).

[5]
b.i.

Hence write down an unbiased estimator of Var(X).

[1]
b.ii.

Markscheme

E(P)=E(Xn)=1nE(X)      M1

=1n(np)=p      A1

so P is an unbiased estimator of p     AG

[2 marks]

a.

E(nP(1P))=E(n(Xn)(1Xn))

=E(X)=1nE(X2)      M1A1

use of E(X2)=Var(X)+(E(X))2      M1

Note: Allow candidates to work with P rather than X for the above 3 marks.

=np1n(np(1p)+(np)2)       A1

=npp(1p)np2

=np(1p)p(1p)      A1

Note: Award A1 for the factor of (1p).

=(n1)p(1p)     AG

[5 marks]

b.i.

an unbiased estimator is n2P(1P)n1(=nUn1)       A1

[1 mark]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 7 - Option: Statistics and probability » 7.3 » Unbiased estimators and estimates.

View options