Date | November 2015 | Marks available | 7 | Reference code | 15N.3sp.hl.TZ0.5 |
Level | HL only | Paper | Paper 3 Statistics and probability | Time zone | TZ0 |
Command term | Find and Show that | Question number | 5 | Adapted from | N/A |
Question
A biased cubical die has its faces labelled \(1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}5\) and \(6\). The probability of rolling a \(6\) is \(p\), with equal probabilities for the other scores.
The die is rolled once, and the score \({X_1}\) is noted.
(i) Find \({\text{E}}({X_1})\).
(ii) Hence obtain an unbiased estimator for \(p\).
The die is rolled a second time, and the score \({X_2}\) is noted.
(i) Show that \(k({X_1} - 3) + \left( {\frac{1}{3} - k} \right)({X_2} - 3)\) is also an unbiased estimator for \(p\) for all values of \(k \in \mathbb{R}\).
(ii) Find the value for \(k\), which maximizes the efficiency of this estimator.
Markscheme
let \(X\) denote the score on the die
(i) \({\text{P}}(X = x) = \left\{ {\begin{array}{*{20}{c}} {\frac{{1 - p}}{5},}&{x = 1,{\text{ 2}},{\text{ 3}},{\text{ 4}},{\text{ 5}}} \\ {p,}&{x = 6} \end{array}} \right.\) (M1)
\(E({X_1}) = (1 + 2 + 3 + 4 + 5)\frac{{1 - p}}{5} + 6p\) M1
\( = 3 + 3p\) A1
(ii) so an unbiased estimator for \(p\) would be \(\frac{{{X_1} - 3}}{3}\) A1
[4 marks]
(i) \(E\left( {k({X_1} - 3) + \left( {\frac{1}{3} - k} \right)({X_2} - 3)} \right)\) M1
\( = kE({X_1} - 3) + \left( {\frac{1}{3} - k} \right)E({X_2} - 3)\) M1
\( = k(3p) + \left( {\frac{1}{3} - k} \right)(3p)\) A1
any correct expression involving just \(k\) and \(p\)
\( = p\) AG
hence \(k({X_1} - 3) + \left( {\frac{1}{3} - k} \right)({X_2} - 3)\) is an unbiased estimator of \(p\)
(ii) \({\text{Var}}\left( {k({X_1} - 3) + \left( {\frac{1}{3} - k} \right)({X_2} - 3)} \right)\) M1
\( = {k^2}{\text{Var}}({X_1} - 3) + {\left( {\frac{1}{3} - k} \right)^2}{\text{Var}}({X_2} - 3)\) A1
\( = \left( {{k^2} + {{\left( {\frac{1}{3} - k} \right)}^2}} \right){\sigma ^2}\) (where \({\sigma ^2}\) denotes \({\text{Var}}(X)\))
valid attempt to minimise the variance M1
\(k = \frac{1}{6}\) A1
Note: Accept an argument which states that the most efficient estimator is the one having equal coefficients of \({X_1}\) and \({X_2}\).
[7 marks]
Total [11 marks]