Date | May 2018 | Marks available | 2 | Reference code | 18M.3sp.hl.TZ0.5 |
Level | HL only | Paper | Paper 3 Statistics and probability | Time zone | TZ0 |
Command term | Show that | Question number | 5 | Adapted from | N/A |
Question
The random variable X has a binomial distribution with parameters \(n\) and \(p\).
Let \(U = nP\left( {1 - P} \right)\).
Show that \(P = \frac{X}{n}\) is an unbiased estimator of \(p\).
Show that \({\text{E}}\left( U \right) = \left( {n - 1} \right)p\left( {1 - p} \right)\).
Hence write down an unbiased estimator of Var(X).
Markscheme
\({\text{E}}\left( P \right) = {\text{E}}\left( {\frac{X}{n}} \right) = \frac{1}{n}{\text{E}}\left( X \right)\) M1
\( = \frac{1}{n}\left( {np} \right) = p\) A1
so P is an unbiased estimator of \(p\) AG
[2 marks]
\({\text{E}}\left( {nP\left( {1 - P} \right)} \right) = {\text{E}}\left( {n\left( {\frac{X}{n}} \right)\left( {1 - \frac{X}{n}} \right)} \right)\)
\( = {\text{E}}\left( X \right) = \frac{1}{n}{\text{E}}\left( {{X^2}} \right)\) M1A1
use of \({\text{E}}\left( {{X^2}} \right) = {\text{Var}}\left( X \right) + {\left( {{\text{E}}\left( X \right)} \right)^2}\) M1
Note: Allow candidates to work with P rather than X for the above 3 marks.
\( = np - \frac{1}{n}\left( {np\left( {1 - p} \right) + {{\left( {np} \right)}^2}} \right)\) A1
\( = np - p\left( {1 - p} \right) - n{p^2}\)
\( = np\left( {1 - p} \right) - p\left( {1 - p} \right)\) A1
Note: Award A1 for the factor of \(\left( {1 - p} \right)\).
\( = \left( {n - 1} \right)p\left( {1 - p} \right)\) AG
[5 marks]
an unbiased estimator is \(\frac{{{n^2}P\left( {1 - P} \right)}}{{n - 1}}\left( { = \frac{{nU}}{{n - 1}}} \right)\) A1
[1 mark]