User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.3sp.hl.TZ0.5
Level HL only Paper Paper 3 Statistics and probability Time zone TZ0
Command term Show that Question number 5 Adapted from N/A

Question

The random variable X has a binomial distribution with parameters \(n\) and \(p\).

Let \(U = nP\left( {1 - P} \right)\).

Show that \(P = \frac{X}{n}\) is an unbiased estimator of \(p\).

[2]
a.

Show that \({\text{E}}\left( U \right) = \left( {n - 1} \right)p\left( {1 - p} \right)\).

[5]
b.i.

Hence write down an unbiased estimator of Var(X).

[1]
b.ii.

Markscheme

\({\text{E}}\left( P \right) = {\text{E}}\left( {\frac{X}{n}} \right) = \frac{1}{n}{\text{E}}\left( X \right)\)      M1

\( = \frac{1}{n}\left( {np} \right) = p\)      A1

so P is an unbiased estimator of \(p\)     AG

[2 marks]

a.

\({\text{E}}\left( {nP\left( {1 - P} \right)} \right) = {\text{E}}\left( {n\left( {\frac{X}{n}} \right)\left( {1 - \frac{X}{n}} \right)} \right)\)

\( = {\text{E}}\left( X \right) = \frac{1}{n}{\text{E}}\left( {{X^2}} \right)\)      M1A1

use of \({\text{E}}\left( {{X^2}} \right) = {\text{Var}}\left( X \right) + {\left( {{\text{E}}\left( X \right)} \right)^2}\)      M1

Note: Allow candidates to work with P rather than X for the above 3 marks.

\( = np - \frac{1}{n}\left( {np\left( {1 - p} \right) + {{\left( {np} \right)}^2}} \right)\)       A1

\( = np - p\left( {1 - p} \right) - n{p^2}\)

\( = np\left( {1 - p} \right) - p\left( {1 - p} \right)\)      A1

Note: Award A1 for the factor of \(\left( {1 - p} \right)\).

\( = \left( {n - 1} \right)p\left( {1 - p} \right)\)     AG

[5 marks]

b.i.

an unbiased estimator is \(\frac{{{n^2}P\left( {1 - P} \right)}}{{n - 1}}\left( { = \frac{{nU}}{{n - 1}}} \right)\)       A1

[1 mark]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 7 - Option: Statistics and probability » 7.3 » Unbiased estimators and estimates.

View options