Date | May 2014 | Marks available | 14 | Reference code | 14M.3sp.hl.TZ0.3 |
Level | HL only | Paper | Paper 3 Statistics and probability | Time zone | TZ0 |
Command term | Determine, Show that, Verify, and Write down | Question number | 3 | Adapted from | N/A |
Question
(a) Consider the random variable \(X\) for which \({\text{E}}(X) = a\lambda + b\), where \(a\) and \(b\)are constants and \(\lambda \) is a parameter.
Show that \(\frac{{X - b}}{a}\) is an unbiased estimator for \(\lambda \).
(b) The continuous random variable Y has probability density function
\(f(y) = \left\{ \begin{array}{r}{\textstyle{2 \over 9}}(3 + y - \lambda ),\\0,\end{array} \right.\begin{array}{*{20}{l}}{{\rm{ for}}\, \lambda - 3 \le y \le \lambda }\\{{\rm{ otherwise}}}\end{array}\)
where \(\lambda \) is a parameter.
(i) Verify that \(f(y)\) is a probability density function for all values of \(\lambda \).
(ii) Determine \({\text{E}}(Y)\).
(iii) Write down an unbiased estimator for \(\lambda \).
Markscheme
(a) \({\text{E}}\left( {\frac{{X - b}}{a}} \right) = \frac{{a\lambda + b - b}}{a}\) M1A1
\( = \lambda \) A1
(Therefore \(\frac{{X - b}}{a}\) is an unbiased estimator for \(\lambda \)) AG
[3 marks]
(b) (i) \(f(y) \geqslant 0\) R1
Note: Only award R1 if this statement is made explicitly.
recognition or showing that integral of f is 1 (seen anywhere) R1
EITHER
\(\int_{\lambda - 3}^\lambda {\frac{2}{9}(3 + y - \lambda ){\text{d}}y} \) M1
\( = \frac{2}{9}\left[ {(3 - \lambda )y + \frac{1}{2}{y^2}} \right]_{\lambda - 3}^\lambda \) A1
\( = \frac{2}{9}\left( {\lambda (3 - \lambda ) + \frac{1}{2}{\lambda ^2} - (3 - \lambda )(\lambda - 3) - \frac{1}{2}{{(\lambda - 3)}^2}} \right)\) or equivalent A1
\( = 1\)
OR
the graph of the probability density is a triangle with base length 3 and height \(\frac{2}{3}\) M1A1
its area is therefore \(\frac{1}{2} \times 3 \times \frac{2}{3}\) A1
\( = 1\)
(ii) \({\text{E}}(Y) = \int_{\lambda - 3}^\lambda {\frac{2}{9}y(3 + y - \lambda ){\text{d}}y} \) M1
\( = \frac{2}{9}\left[ {(3 - \lambda )\frac{1}{2}{y^2} + \frac{1}{3}{y^3}} \right]_{\lambda - 3}^\lambda \) A1
\( = \frac{2}{9}\left( {(3 - \lambda )\frac{1}{2}\left( {{\lambda ^2} - {{(\lambda - 3)}^2}} \right) + \frac{1}{3}\left( {{\lambda ^3} - {{(\lambda - 3)}^3}} \right)} \right)\) M1
\( = \lambda - 1\) A1A1
Note: Award 3 marks for noting that the mean is \(\frac{2}{3}{\text{rds}}\) the way along the base and then A1A1 for \(\lambda - 1\).
Note: Award A1 for \(\lambda \) and A1 for –1.
(iii) unbiased estimator: \(Y + 1\) A1
Note: Accept \(\bar Y + 1\).
Follow through their \({\text{E}}(Y)\) if linear.
[11 marks]
Total [14 marks]