Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 14 Reference code 14M.3sp.hl.TZ0.3
Level HL only Paper Paper 3 Statistics and probability Time zone TZ0
Command term Determine, Show that, Verify, and Write down Question number 3 Adapted from N/A

Question

(a)     Consider the random variable X for which E(X)=aλ+b, where a and bare constants and λ is a parameter.

Show that Xba is an unbiased estimator for λ.

(b)     The continuous random variable Y has probability density function

f(y)={29(3+yλ),0,forλ3yλotherwise

where λ is a parameter.

          (i)     Verify that f(y) is a probability density function for all values of λ.

          (ii)     Determine E(Y).

          (iii)     Write down an unbiased estimator for λ.

Markscheme

(a)     E(Xba)=aλ+bba     M1A1

=λ     A1

(Therefore Xba is an unbiased estimator for λ)     AG

[3 marks]

 

(b)     (i)     f(y)     R1

 

Note:     Only award R1 if this statement is made explicitly.

 

          recognition or showing that integral of f is 1 (seen anywhere) R1

          EITHER

          \int_{\lambda  - 3}^\lambda  {\frac{2}{9}(3 + y - \lambda ){\text{d}}y}     M1

          = \frac{2}{9}\left[ {(3 - \lambda )y + \frac{1}{2}{y^2}} \right]_{\lambda  - 3}^\lambda     A1

          = \frac{2}{9}\left( {\lambda (3 - \lambda ) + \frac{1}{2}{\lambda ^2} - (3 - \lambda )(\lambda  - 3) - \frac{1}{2}{{(\lambda  - 3)}^2}} \right) or equivalent     A1

          = 1

          OR

          the graph of the probability density is a triangle with base length 3 and height \frac{2}{3}     M1A1

          its area is therefore \frac{1}{2} \times 3 \times \frac{2}{3}     A1

          = 1

          (ii)     {\text{E}}(Y) = \int_{\lambda  - 3}^\lambda  {\frac{2}{9}y(3 + y - \lambda ){\text{d}}y}     M1

          = \frac{2}{9}\left[ {(3 - \lambda )\frac{1}{2}{y^2} + \frac{1}{3}{y^3}} \right]_{\lambda  - 3}^\lambda     A1

          = \frac{2}{9}\left( {(3 - \lambda )\frac{1}{2}\left( {{\lambda ^2} - {{(\lambda  - 3)}^2}} \right) + \frac{1}{3}\left( {{\lambda ^3} - {{(\lambda  - 3)}^3}} \right)} \right)     M1

          = \lambda  - 1     A1A1

 

Note:     Award 3 marks for noting that the mean is \frac{2}{3}{\text{rds}} the way along the base and then A1A1 for \lambda  - 1.

 

Note:     Award A1 for \lambda and A1 for –1.

 

          (iii)     unbiased estimator: Y + 1     A1

 

Note:     Accept \bar Y + 1.

     Follow through their {\text{E}}(Y) if linear.

 

[11 marks]

 

Total [14 marks]

Examiners report

[N/A]

Syllabus sections

Topic 7 - Option: Statistics and probability » 7.3 » Unbiased estimators and estimates.

View options