Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 5 Reference code 18M.1.hl.TZ1.9
Level HL only Paper 1 Time zone TZ1
Command term Show that Question number 9 Adapted from N/A

Question

Let f(x)=23x52x3,xR,x0.

The graph of y=f(x) has a local maximum at A. Find the coordinates of A.

[5]
a.

Show that there is exactly one point of inflexion, B, on the graph of y=f(x).

[5]
b.i.

The coordinates of B can be expressed in the form B(2a,b×23a) where a, bQ. Find the value of a and the value of b.

[3]
b.ii.

Sketch the graph of y=f(x) showing clearly the position of the points A and B.

[4]
c.

Markscheme

attempt to differentiate      (M1)

f(x)=3x43x     A1

Note: Award M1 for using quotient or product rule award A1 if correct derivative seen even in unsimplified form, for example f(x)=15x4×2x36x2(23x5)(2x3)2.

3x43x=0     M1

x5=1x=1     A1

A(1,52)     A1

[5 marks]

a.

f     M1

f''\left( x \right) = 12{x^{ - 5}} - 3\left( { = 0} \right)     A1

Note: Award A1 for correct derivative seen even if not simplified.

\Rightarrow x = \sqrt[5]{4}\left( { = {2^{\frac{2}{5}}}} \right)     A1

hence (at most) one point of inflexion      R1

Note: This mark is independent of the two A1 marks above. If they have shown or stated their equation has only one solution this mark can be awarded.

f''\left( x \right) changes sign at x = \sqrt[5]{4}\left( { = {2^{\frac{2}{5}}}} \right)      R1

so exactly one point of inflexion

[5 marks]

b.i.

x = \sqrt[5]{4} = {2^{\frac{2}{5}}}\left( { \Rightarrow a = \frac{2}{5}} \right)      A1

f\left( {{2^{\frac{2}{5}}}} \right) = \frac{{2 - 3 \times {2^2}}}{{2 \times {2^{\frac{6}{5}}}}} =  - 5 \times {2^{ - \frac{6}{5}}}\left( { \Rightarrow b =  - 5} \right)     (M1)A1

Note: Award M1 for the substitution of their value for x into f\left( x \right).

[3 marks]

b.ii.

A1A1A1A1

A1 for shape for x < 0
A1 for shape for x > 0
A1 for maximum at A
A1 for POI at B.

Note: Only award last two A1s if A and B are placed in the correct quadrants, allowing for follow through.

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.

Syllabus sections

Topic 6 - Core: Calculus » 6.3 » Points of inflexion with zero and non-zero gradients.
Show 22 related questions

View options