User interface language: English | Español

Date May 2015 Marks available 3 Reference code 15M.1.hl.TZ2.4
Level HL only Paper 1 Time zone TZ2
Command term Find Question number 4 Adapted from N/A

Question

Consider the function defined by \(f(x) = {x^3} - 3{x^2} + 4\).

Determine the values of \(x\) for which \(f(x)\) is a decreasing function.

[4]
a.

There is a point of inflexion, \(P\), on the curve \(y = f(x)\).

Find the coordinates of \(P\).

[3]
b.

Markscheme

attempt to differentiate \(f(x) = {x^3} - 3{x^2} + 4\)     M1

\(f'(x) = 3{x^2} - 6x\)     A1

\( = 3x(x - 2)\)

(Critical values occur at) \(x = 0,{\text{ }}x = 2\)     (A1)

so \(f\) decreasing on \(x \in ]0,{\text{ }}2[\;\;\;({\text{or }}0 < x < 2)\)     A1

[4 marks]

a.

\(f''(x) = 6x - 6\)     (A1)

setting \(f''(x) = 0\)     M1

\( \Rightarrow x = 1\)

coordinate is \((1,{\text{ }}2)\)     A1

[3 marks]

Total [7 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.3 » Points of inflexion with zero and non-zero gradients.

View options