Date | November 2017 | Marks available | 3 | Reference code | 17N.3sp.hl.TZ0.3 |
Level | HL only | Paper | Paper 3 Statistics and probability | Time zone | TZ0 |
Command term | Hence and Find | Question number | 3 | Adapted from | N/A |
Question
A random variable \(X\) is distributed with mean \(\mu \) and variance \({\sigma ^2}\). Two independent random samples of sizes \({n_1}\) and \({n_2}\) are taken from the distribution of \(X\). The sample means are \({\bar X_1}\) and \({\bar X_2}\) respectively.
Show that \(U = a{\bar X_1} + (1 - a){\bar X_2},{\text{ }}a \in \mathbb{R}\), is an unbiased estimator of \(\mu \).
Show that \({\text{Var}}(U) = {a^2}\frac{{{\sigma ^2}}}{{{n_1}}} + {(1 - a)^2}\frac{{{\sigma ^2}}}{{{n_2}}}\).
Find, in terms of \({n_1}\) and \({n_2}\), an expression for \(a\) which gives the most efficient estimator of this form.
Hence find an expression for the most efficient estimator and interpret the result.
Markscheme
\({\text{E}}(U) = E(a{\bar X_1} + (1 - a){\bar X_2}) = a{\text{E}}({\bar X_1}) + (1 - a){\text{E}}({\bar X_2})\) (M1)
\({\text{E}}({\bar X_1}) = \mu \) and \({\text{E}}({\bar X_2}) = \mu \)
\({\text{E}}(U) = a\mu + (1 - a)\mu \) (or equivalent) A1
\( = \mu \) A1
hence \(U\) is an unbiased estimator of \(\mu \) AG
[3 marks]
\({\text{Var}}(U) = {\text{Var}}(a{\bar X_1} + (1 - a){\bar X_2})\)
\( = {a^2}{\text{Var}}({\bar X_1}) + {(1 - a)^2}{\text{Var}}({\bar X_2})\) M1
stating that \({\text{Var}}({\bar X_1}) = \frac{{{\sigma ^2}}}{{{n_1}}}\) and \({\text{Var}}({\bar X_2}) = \frac{{{\sigma ^2}}}{{{n_2}}}\) A1
\( \Rightarrow {\text{Var}}(U) = {a^2}\frac{{{\sigma ^2}}}{{{n_1}}} + {(1 - a)^2}\frac{{{\sigma ^2}}}{{{n_2}}}\) AG
Note: Line 3 or equivalent must be seen somewhere.
[2 marks]
let \({\text{Var}}(U) = V\)
EITHER
\(\frac{{{\text{d}}V}}{{{\text{d}}a}} = 2a\frac{{{\sigma ^2}}}{{{n_1}}} - 2(1 - a)\frac{{{\sigma ^2}}}{{{n_2}}}\) M1
attempting to solve \(\frac{{{\text{d}}V}}{{{\text{d}}a}} = 0\) for \(a\) R1
Note: Award M1 for obtaining \(a\) in terms of \({n_1},{\text{ }}{n_2}\) and \(\sigma \).
OR
forming a quadratic in \(a\)
\(V = \left( {\frac{{{\sigma ^2}}}{{{n_1}}} + \frac{{{\sigma ^2}}}{{{n_2}}}} \right){a^2} - 2\frac{{{\sigma ^2}}}{{{n_2}}}a + \frac{{{\sigma ^2}}}{{{n_2}}}\) M1
attempting to find the axis of symmetry of V R1
THEN
\(a = \frac{{\frac{{2{\sigma ^2}}}{{{n_2}}}}}{{2{\sigma ^2}\left( {\frac{1}{{{n_1}}} + \frac{1}{{{n_2}}}} \right)}}\) (A1)
\(a = \frac{{{n_1}}}{{{n_1} + {n_2}}}\) A1
[4 marks]
substituting \(a\) into \(U\) (M1)
\(U = \frac{{{n_1}{{\bar X}_1} + {n_2}{{\bar X}_2}}}{{{n_1} + {n_2}}}\) A1
Note: Do not FT an incorrect \(a\) for A1, the M1 may however be awarded.
this is an expression for the mean of the combined samples
OR this is a weighted mean of the two sample means R1
[3 marks]