Date | May 2017 | Marks available | 3 | Reference code | 17M.3sp.hl.TZ0.4 |
Level | HL only | Paper | Paper 3 Statistics and probability | Time zone | TZ0 |
Command term | Show that | Question number | 4 | Adapted from | N/A |
Question
The random variables X1X1 and X2X2 are a random sample from N(μ, 2σ2)N(μ, 2σ2). The random variables Y1Y1, Y2Y2 and Y3Y3 are a random sample from N(2μ, σ2)N(2μ, σ2).
The estimator UU is used to estimate μμ where U=a(X1+X2)+b(Y1+Y2+Y3)U=a(X1+X2)+b(Y1+Y2+Y3) and aa, bb are constants.
Given that UU is unbiased, show that 2a+6b=12a+6b=1.
Show that Var(U)=(39b2−12b+1)σ2Var(U)=(39b2−12b+1)σ2.
Hence find the value of aa and the value of bb which give the best unbiased estimator of this form, giving your answers as fractions.
Hence find the variance of this best unbiased estimator.
Markscheme
E(U)=a(E(X1)+E(X2))+b(E(Y1)+E(Y2)+E(Y3))E(U)=a(E(X1)+E(X2))+b(E(Y1)+E(Y2)+E(Y3)) (M1)
=2aμ+6bμ=2aμ+6bμ A1
(for an unbiased estimator,) E(U)=μE(U)=μ R1
giving 2a+6b=12a+6b=1 AG
Note: Condone omission of E on LHS.
[3 marks]
Var(U)=a2(Var(X1)+Var(X2))+b2(Var(Y1)+Var(Y2)+Var(Y3))Var(U)=a2(Var(X1)+Var(X2))+b2(Var(Y1)+Var(Y2)+Var(Y3)) (M1)
=4a2σ2+3b2σ2=4a2σ2+3b2σ2 A1
=4(1−6b2)2σ2+3b2σ2=4(1−6b2)2σ2+3b2σ2 A1
=(39b2−12b+1)σ2=(39b2−12b+1)σ2 AG
[3 marks]
the best unbiased estimator (of this form) will be found by minimising Var(U)Var(U) (R1)
For example, ddb(Var(U))=(78b−12)σ2ddb(Var(U))=(78b−12)σ2 (A1)
for a minimum, b=1278(=213)b=1278(=213) so that a=378(=126)a=378(=126) A1
[3 marks]
VarU=(39(213)2−12(213)+1)σ2VarU=(39(213)2−12(213)+1)σ2
=σ213(0.0769σ2)=σ213(0.0769σ2) A1
[1 mark]