User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.3srg.hl.TZ0.1
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Determine Question number 1 Adapted from N/A

Question

The set \(A\) contains all positive integers less than 20 that are congruent to 3 modulo 4.

The set \(B\) contains all the prime numbers less than 20.

The set \(C\) is defined as \(C = \{ 7,{\text{ }}9,{\text{ }}13,{\text{ }}19\} \).

Write down all the elements of \(A\) and all the elements of \(B\).

[2]
a.i.

Determine the symmetric difference, \(A\Delta B\), of the sets \(A\) and \(B\).

[2]
a.ii.

Write down all the elements of \(A \cap B,{\text{ }}A \cap C\) and \(B \cup C\).

[3]
b.i.

Hence by considering \(A \cap (B \cup C)\), verify that in this case the operation \( \cap \) is distributive over the operation \( \cup \).

[3]
b.ii.

Markscheme

the elements of \(A\) are: 3, 7, 11, 15, 19     A1

the elements of \(B\) are 2, 3, 5, 7, 11, 13, 17, 19     A1

 

Note:     Accept \(A = \{ 3,{\text{ }}7,{\text{ }}11,{\text{ }}15,{\text{ }}19\} \) and \(B = \{ 2,{\text{ }}3,{\text{ }}5,{\text{ }}7,{\text{ }}11,{\text{ }}13,{\text{ }}17,{\text{ }}19\} \)

 

[2 marks]

a.i.

attempt to determine \(A\backslash B \cup B\backslash A\) or \((A \cup B) \cap (A \cap B)'\)     (M1)

symmetric difference \( = \{ 2,{\text{ }}5,{\text{ }}13,{\text{ }}15,{\text{ }}17\} \)     A1

 

Note:     Allow (M1)A1FT.

 

[2 marks]

a.ii.

the elements of \(A \cap B\) are 3, 7, 11 and 19     A1

the elements of \(A \cap C\) are 7 and19     A1

the elements of \(B \cup C\) are 2, 3, 5, 7, 9, 11, 13, 17 and 19     A1

 

Note:     Accept \(A \cap B = \{ 3,{\text{ }}7,{\text{ }}11,{\text{ }}19\} ,{\text{ }}A \cap C = \{ 7,{\text{ }}19\} \) and \(B \cup C = \{ 2,{\text{ }}3,{\text{ }}5,{\text{ }}7,{\text{ }}9,{\text{ }}11,{\text{ }}13,{\text{ }}17,{\text{ }}19\} \).

 

[3 marks]

b.i.

we need to show that

\(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)     (M1)

\(A \cap (B \cup C) = \{ 3,{\text{ }}7,{\text{ }}11,{\text{ }}19\} \)     A1

\((A \cap B) \cup (A \cap C) = \{ 3,{\text{ }}7,{\text{ }}11,{\text{ }}19\} \)     A1

hence showing the required result

 

Note:     Allow (M1)A1FTA1FT.

 

[3 marks]

b.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.1
Show 21 related questions

View options