Processing math: 100%

User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.3srg.hl.TZ0.1
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Write down Question number 1 Adapted from N/A

Question

The set A contains all positive integers less than 20 that are congruent to 3 modulo 4.

The set B contains all the prime numbers less than 20.

The set C is defined as C={7, 9, 13, 19}.

Write down all the elements of A and all the elements of B.

[2]
a.i.

Determine the symmetric difference, AΔB, of the sets A and B.

[2]
a.ii.

Write down all the elements of AB, AC and BC.

[3]
b.i.

Hence by considering A(BC), verify that in this case the operation is distributive over the operation .

[3]
b.ii.

Markscheme

the elements of A are: 3, 7, 11, 15, 19     A1

the elements of B are 2, 3, 5, 7, 11, 13, 17, 19     A1

 

Note:     Accept A={3, 7, 11, 15, 19} and B={2, 3, 5, 7, 11, 13, 17, 19}

 

[2 marks]

a.i.

attempt to determine ABBA or (AB)(AB)     (M1)

symmetric difference ={2, 5, 13, 15, 17}     A1

 

Note:     Allow (M1)A1FT.

 

[2 marks]

a.ii.

the elements of AB are 3, 7, 11 and 19     A1

the elements of AC are 7 and19     A1

the elements of BC are 2, 3, 5, 7, 9, 11, 13, 17 and 19     A1

 

Note:     Accept AB={3, 7, 11, 19}, AC={7, 19} and BC={2, 3, 5, 7, 9, 11, 13, 17, 19}.

 

[3 marks]

b.i.

we need to show that

A(BC)=(AB)(AC)     (M1)

A(BC)={3, 7, 11, 19}     A1

(AB)(AC)={3, 7, 11, 19}     A1

hence showing the required result

 

Note:     Allow (M1)A1FTA1FT.

 

[3 marks]

b.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.1
Show 21 related questions

View options