Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 5 Reference code 14M.3srg.hl.TZ0.3
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Sketch and State Question number 3 Adapted from N/A

Question

Sets X and Y are defined by  X=]0, 1[; Y={0, 1, 2, 3, 4, 5}.

(i)     Sketch the set X×Y in the Cartesian plane.

(ii)     Sketch the set Y×X in the Cartesian plane.

(iii)     State (X×Y)(Y×X).

[5]
a.

Consider the function f:X×YR defined by f(x, y)=x+y and the function g:X×YR defined by g(x, y)=xy.

(i)     Find the range of the function f.

(ii)     Find the range of the function g.

(iii)     Show that f is an injection.

(iv)     Find f1(π), expressing your answer in exact form.

(v)     Find all solutions to g(x, y)=12.

[10]
b.

Markscheme

(i)     

correct horizontal lines     A1

correctly labelled axes     A1

clear indication that the endpoints are not included     A1

(ii)     

fully correct diagram     A1

 

Note:     Do not penalize the inclusion of endpoints twice.

 

(iii)     the intersection is empty     A1

[5 marks]

a.

(i)     range (f)=]0, 1[]1, 2[L]5, 6[     A1A1

 

Note:     A1 for six intervals and A1 for fully correct notation.

     Accept 0<x<6, x0, 1, 2, 3, 4, 5, 6.

 

(ii)     range (g)=[0, 5[     A1

(iii)     Attempt at solving

f(x1, y1)=f(x2, y2)     M1

f(x, y)]y, y+1[y1=y2     M1

and then x1=x2     A1

so f is injective     AG

(iv)     f1(π)=(π3, 3)     A1A1

(v)     solutions: (0.5, 1), (0.25, 2), (16, 3), (0.125, 4), (0.1, 5)     A2

 

Note:     A2 for all correct, A1 for 2 correct.

 

[10 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.1 » Finite and infinite sets. Subsets.

View options