User interface language: English | Español

Date May 2014 Marks available 5 Reference code 14M.3srg.hl.TZ0.3
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Sketch and State Question number 3 Adapted from N/A

Question

Sets X and Y are defined by \({\text{ }}X = \left] {0,{\text{ }}1} \right[;{\text{ }}Y = \{ 0,{\text{ }}1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5\} \).

(i)     Sketch the set \(X \times Y\) in the Cartesian plane.

(ii)     Sketch the set \(Y \times X\) in the Cartesian plane.

(iii)     State \((X \times Y) \cap (Y \times X)\).

[5]
a.

Consider the function \(f:X \times Y \to \mathbb{R}\) defined by \(f(x,{\text{ }}y) = x + y\) and the function \(g:X \times Y \to \mathbb{R}\) defined by \(g(x,{\text{ }}y) = xy\).

(i)     Find the range of the function f.

(ii)     Find the range of the function g.

(iii)     Show that \(f\) is an injection.

(iv)     Find \({f^{ - 1}}(\pi )\), expressing your answer in exact form.

(v)     Find all solutions to \(g(x,{\text{ }}y) = \frac{1}{2}\).

[10]
b.

Markscheme

(i)     

correct horizontal lines     A1

correctly labelled axes     A1

clear indication that the endpoints are not included     A1

(ii)     

fully correct diagram     A1

 

Note:     Do not penalize the inclusion of endpoints twice.

 

(iii)     the intersection is empty     A1

[5 marks]

a.

(i)     range \((f) = \left] {0,{\text{ 1}}} \right[ \cup \left] {1,{\text{ 2}}} \right[ \cup \rm{L} \cup \left] {5,{\text{ 6}}} \right[\)     A1A1

 

Note:     A1 for six intervals and A1 for fully correct notation.

     Accept \(0 < x < 6,{\text{ }}x \ne 0{\text{, 1, 2, 3, 4, 5, 6}}\).

 

(ii)     range \((g) = \left[ {0,{\text{ 5}}} \right[\)     A1

(iii)     Attempt at solving

\(f({x_1},{\text{ }}{y_1}) = f({x_2},{\text{ }}{y_2})\)     M1

\(f(x,{\text{ }}y) \in \left] {y,{\text{ }}y + 1} \right[ \Rightarrow {y_1} = {y_2}\)     M1

and then \({x_1} = {x_2}\)     A1

so \(f\) is injective     AG

(iv)     \({f^{ - 1}}(\pi ) = (\pi  - 3,{\text{ }}3)\)     A1A1

(v)     solutions: (0.5, 1), (0.25, 2), \(\left( {\frac{1}{6},{\text{ 3}}} \right)\), (0.125, 4), (0.1, 5)     A2

 

Note:     A2 for all correct, A1 for 2 correct.

 

[10 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.1 » Finite and infinite sets. Subsets.

View options