User interface language: English | Español

Date November 2017 Marks available 2 Reference code 17N.3srg.hl.TZ0.2
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Describe Question number 2 Adapted from N/A

Question

AA, B and C are three subsets of a universal set.

Consider the sets P={1, 2, 3}, Q={2, 3, 4} and R={1, 3, 5}.

Represent the following set on a Venn diagram,

AΔB, the symmetric difference of the sets A and B;

[1]
a.i.

Represent the following set on a Venn diagram,

A(BC).

[1]
a.ii.

For sets P, Q and R, verify that P(QΔR)(PQ)Δ(PR).

[4]
b.i.

In the context of the distributive law, describe what the result in part (b)(i) illustrates.

[2]
b.ii.

Markscheme

N17/5/MATHL/HP3/ENG/TZ0/SG/M/02.a.i     A1

[1 mark]

 

Note: Accept alternative set configurations

a.i.

N17/5/MATHL/HP3/ENG/TZ0/SG/M/02.a.ii     A1

 

Note:     Accept alternative set configurations.

 

[1 mark]

a.ii.

LHS:

QΔR={1, 2, 4, 5}     (A1)

P(QΔR)={1, 2, 3, 4, 5}     A1

RHS:

PQ={1, 2, 3, 4} and PR={1, 2, 3, 5}     (A1)

(PQ)Δ(PR)={4, 5}     A1

hence P(QΔR)(PQ)Δ(PR)     AG

 

[4 marks]

b.i.

the result shows that union is not distributive over symmetric difference     A1R1

 

Notes:     Award A1 for “union is not distributive” and R1 for “over symmetric difference”. Condone use of and Δ.

 

[2 marks]

b.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.1 » Finite and infinite sets. Subsets.

View options