Date | May 2017 | Marks available | 5 | Reference code | 17M.2.hl.TZ2.6 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 6 | Adapted from | N/A |
Question
Given that \({\log _{10}}\left( {\frac{1}{{2\sqrt 2 }}\left( {p + 2q} \right)} \right) = \frac{1}{2}\left( {{{\log }_{10}}p + {{\log }_{10}}q} \right),{\text{ }}p > 0,{\text{ }}q > 0\), find \(p\) in terms of \(q\).
Markscheme
\({\log _{10}}\frac{1}{{2\sqrt 2 }}(p + 2q) = \frac{1}{2}({\log _{10}}p + {\log _{10}}q)\)
\({\log _{10}}\frac{1}{{2\sqrt 2 }}(p + 2q) = \frac{1}{2}{\log _{10}}pq\) (M1)
\({\log _{10}}\frac{1}{{2\sqrt 2 }}(p + 2q) = {\log _{10}}{(pq)^{\frac{1}{2}}}\) (M1)
\(\frac{1}{{2\sqrt 2 }}(p + 2q) = {(pq)^{\frac{1}{2}}}\) (A1)
\({(p + 2q)^2} = 8pq\)
\({p^2} + 4pq + 4{q^2} = 8pq\)
\({p^2} - 4pq + 4{q^2} = 0\)
\({(p - 2q)^2} = 0\) M1
hence \(p = 2q\) A1
[5 marks]