User interface language: English | Español

Date November 2016 Marks available 3 Reference code 16N.3dm.hl.TZ0.1
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term Find Question number 1 Adapted from N/A

Question

In this question the notation \({({a_n}{a_{n - 1}} \ldots {a_2}{a_1}{a_0})_b}\) is used to represent a number in base \(b\), that has unit digit of \({a_0}\). For example \({(2234)_5}\) represents \(2 \times {5^3} + 2 \times {5^2} + 3 \times 5 + 4 = 319\) and it has a unit digit of 4.

Let \(x\) be the cube root of the base 7 number \({(503231)_7}\).

(i)     By converting the base 7 number to base 10, find the value of \(x\), in base 10.

(ii)     Express \(x\) as a base 5 number.

[7]
a.

Let \(y\) be the base 9 number \({({a_n}{a_{n - 1}} \ldots {a_1}{a_0})_9}\). Show that \(y\) is exactly divisible by 8 if and only if the sum of its digits, \(\sum\limits_{i = 0}^n {{a_i}} \), is also exactly divisible by 8.

[7]
b.

Using the method from part (b), find the unit digit when the base 9 number \({(321321321)_9}\) is written as a base 8 number.

[3]
c.

Markscheme

(i)     converting to base 10

\({(503231)_7} = 5 \times {7^5} + 3 \times {7^3} + 2 \times {7^2} + 3 \times 7 + 1 = 85184\)    M1A1A1

so \(x = 44\)     A1

(ii)     repeated division by 5 gives     (M1)

N16/5/MATHL/HP3/ENG/TZ/DM/M/01.a

so base 5 value for \(x\) is \({(134)_5}\)     A1

 

Notes: Alternative method is to successively subtract the largest multiple of 25 and then 5.

Follow through if they forget to take the cube root and obtain \({(10211214)_5}\) then award (M1)(A1)A1.

 

[7 marks]

a.

\(9 \equiv 1(\bmod 8)\)    A1

\({9^i} \equiv {1^i} \equiv 1(\bmod 8)\)    \(i \in \mathbb{N}\)     (M1)(A1)

\(y = {a_n}{9^n} + {a_{n - 1}}{9^{n - 1}} +  \ldots  + {a_1}9 + {a_0} \equiv {a_n}{1^n} + {a_{n - 1}}{1^{n - 1}} +  \ldots  + {a_1}1 + {a_0} \equiv \)

\({a_n} + {a_{n - 1}} +  \ldots  + {a_1} + {a_0} \equiv \sum\limits_{i = 0}^n {{a_i}(\bmod 8)} \)    M1A1A1

so \(y = 0(\bmod 8)\) and hence divisible by 8 if and only if \(\sum\limits_{i = 0}^n {{a_i} \equiv 0(\bmod 8)} \) and hence divisible by 8     R1AG

 

Note: Accept alternative valid methods eg binomial expansion of \({(8 + 1)^i}\), factorization of \(({a^i} - 1)\) if they have sufficient explanation.

 

[7 marks]

b.

using part (b), \({(321321321)_9} \equiv 3 + 2 + 1 + 3 + 2 + 1 + 3 + 2 + 1 = 18 \equiv 2(\bmod 8)\)     M1A1

so the unit digit is 2     A1

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.5 » Representation of integers in different bases.
Show 22 related questions

View options