Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2016 Marks available 3 Reference code 16N.2.hl.TZ0.9
Level HL only Paper 2 Time zone TZ0
Command term Find Question number 9 Adapted from N/A

Question

The diagram shows two circles with centres at the points A and B and radii 2r and r, respectively. The point B lies on the circle with centre A. The circles intersect at the points C and D.

N16/5/MATHL/HP2/ENG/TZ0/09

Let α be the measure of the angle CAD and θ be the measure of the angle CBD in radians.

Find an expression for the shaded area in terms of α, θ and r.

[3]
a.

Show that α=4arcsin14.

[2]
b.

Hence find the value of r given that the shaded area is equal to 4.

[3]
c.

Markscheme

A=2(αsinα)r2+12(θsinθ)r2    M1A1A1

 

Note: Award M1A1A1 for alternative correct expressions eg. A=4(α2sinα2)r2+12θr2.

 

[3 marks]

a.

METHOD 1

consider for example triangle ADM where M is the midpoint of BD     M1

sinα4=14    A1

α4=arcsin14

α=4arcsin14    AG

METHOD 2

attempting to use the cosine rule (to obtain 1cosα2=18)     M1

sinα4=14 (obtained from sinα4=1cosα22)     A1

α4=arcsin14

α=4arcsin14    AG

METHOD 3

sin(π2α4)=2sinα2 where θ2=π2α4

cosα4=4sinα4cosα4    M1

 

Note: Award M1 either for use of the double angle formula or the conversion from sine to cosine.

 

14=sinα4    A1

α4=arcsin14

α=4arcsin14    AG

[2 marks]

b.

(from triangle ADM), θ=πα2 (=π2arcsin14=2arcsin14=2.6362)     A1

attempting to solve 2(αsinα)r2+12(θsinθ)r2=4

with α=4arcsin14 and θ=πα2 (=2arccos14) for r     (M1)

r=1.69    A1

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.1 » The circle: radian measure of angles.
Show 23 related questions

View options