User interface language: English | Español

Date May 2015 Marks available 2 Reference code 15M.1.hl.TZ1.1
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 1 Adapted from N/A

Question

The logo, for a company that makes chocolate, is a sector of a circle of radius \(2\) cm, shown as shaded in the diagram. The area of the logo is \(3\pi {\text{ c}}{{\text{m}}^2}\).

Find, in radians, the value of the angle \(\theta \), as indicated on the diagram.

[3]
a.

Find the total length of the perimeter of the logo.

[2]
b.

Markscheme

METHOD 1

\({\text{area}} = \pi {2^2} - \frac{1}{2}{2^2}\theta \;\;\;( = 3\pi )\)     M1A1

 

Note:     Award M1 for using area formula.

 

\( \Rightarrow 2\theta  = \pi  \Rightarrow \theta  = \frac{\pi }{2}\)     A1

 

Note:     Degrees loses final A1

 

METHOD 2

 

let \(x = 2\pi  - \theta \)

\({\text{area}} = \frac{1}{2}{2^2}x\;\;\;( = 3\pi )\)     M1

\( \Rightarrow x = \frac{3}{2}\pi \)     A1

\( \Rightarrow \theta  = \frac{\pi }{2}\)     A1

METHOD 3

Area of circle is \(4\pi \)     A1

Shaded area is \(\frac{3}{4}\) of the circle     (R1)

\( \Rightarrow \theta  = \frac{\pi }{2}\)     A1

[3 marks]

a.

\({\text{arc length}} = 2\frac{{3\pi }}{2}\)     A1

\({\text{perimeter}} = 2\frac{{3\pi }}{2} + 2 \times 2\)

\( = 3\pi  + 4\)     A1

[2 marks]

Total [5 marks]

b.

Examiners report

Good methods. Some candidates found the larger angle.

a.

Generally good, some forgot the radii.

b.

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.1 » The circle: radian measure of angles.

View options