User interface language: English | Español

Date November 2015 Marks available 4 Reference code 15N.1.hl.TZ0.1
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 1 Adapted from N/A

Question

The following diagram shows a sector of a circle where \({\rm{A\hat OB}} = x\) radians and the length of the \({\text{arc AB}} = \frac{2}{x}{\text{ cm}}\).

Given that the area of the sector is \(16{\text{ c}}{{\text{m}}^2}\), find the length of the arc \(AB\).

Markscheme

\({\text{arc length}} = \frac{2}{x} = rx\;\;\;\left( { \Rightarrow r = \frac{2}{{{x^2}}}} \right)\)     M1

\(16 = \frac{1}{2}{\left( {\frac{2}{{{x^2}}}} \right)^2}x\;\;\;\left( { \Rightarrow \frac{2}{{{x^3}}} = 16} \right)\)     M1

 

Note:     Award M1s for attempts at the use of arc-length and sector-area formulae.

 

\(x = \frac{1}{2}\)     A1

\({\text{arc length}} = {\text{4 (cm)}}\)     A1

[4 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.1 » The circle: radian measure of angles.

View options