User interface language: English | Español

Date November 2017 Marks available 4 Reference code 17N.3.HL.TZ0.7
Level Higher level Paper Paper 3 Time zone Time zone 0
Command term Determine Question number 7 Adapted from N/A

Question

The \({\Lambda ^0}\) (Lambda) particle decays spontaneously into a proton and a negatively charged pion of rest mass 140 MeV c–2. After the decay, the particles are moving in the same direction with a proton momentum of 630 MeV c–1 and a pion momentum of 270 MeV c–1.

Determine the rest mass of the \({\Lambda ^0}\) particle.

[4]
a.

Determine, using your answer to (a), the initial speed of the \({\Lambda ^0}\) particle.

[2]
b.

Markscheme

\(\Lambda \) momentum = 900

Eproton = «\(\sqrt {p{c^2} + {{\left( {m{c^2}} \right)}^2}}  = \sqrt {{{630}^2} + {{938}^2}}  = \)» 1130 «MeV»

Epion = «\(\sqrt {{{270}^2} + {{140}^2}}  = \)» 304 «MeV»

so rest mass of \(\Lambda \) = «\(\sqrt {{{\left( {1130 + 304} \right)}^2} - {{900}^2}}  = \)» 1116 «MeV c–2»

a.

«E = \(\gamma \) mc2 so» \(\gamma \) = « \(\frac{{1434}}{{1116}}\) =» 1.28

to give 0.64c

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Option A: Relativity » Option A: Relativity (Additional higher level option topics) » A.4 – Relativistic mechanics (HL only)
Show 41 related questions

View options