Date | May 2017 | Marks available | 9 | Reference code | 17M.2.hl.TZ0.5 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Solve and Find | Question number | 5 | Adapted from | N/A |
Question
Consider the differential equation
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\tan x = 2{\sec ^2}x,{\text{ }}0 \leqslant x < \frac{\pi }{2}\), given that \(y = 1\) when \(x = 0\).
By considering integration as the reverse of differentiation, show that for
\(0 \leqslant x < \frac{\pi }{2}\)
\[\int {\sec x{\text{d}}x = \ln (\sec x + \tan x) + C.} \]
Hence, using integration by parts, show that
\[\int {{{\sec }^3}x{\text{d}}x = \frac{1}{2}\left( {\sec x\tan x + \ln (\sec x + \tan x)} \right) + C.} \]
Find an integrating factor and hence solve the differential equation, giving your answer in the form \(y = f(x)\).
Starting with the differential equation, show that
\[\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y = 2{\sec ^2}x\tan x.\]
Hence, by using your calculator to draw two appropriate graphs or otherwise, find the \(x\)-coordinate of the point of inflection on the graph of \(y = f(x)\).
Markscheme
\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {\ln (\sec x + \tan x)} \right) = \frac{{\sec x\tan x + {{\sec }^2}x}}{{\sec x + \tan x}}\) M1
\( = \sec x\) A1
therefore \(\int {\sec x{\text{d}}x = \ln (\sec x + \tan x) + C} \) AG
[4 marks]
\(\int {{{\sec }^3}x{\text{d}}x = \int {\sec x \times {{\sec }^2}x{\text{d}}x} } \) M1
\( = \sec x\tan x - \int {\sec x{{\tan }^2}x{\text{d}}x} \) A1A1
\( = \sec x\tan x - \int {\sec x({{\sec }^2}x - 1){\text{d}}x} \) A1
\( = \sec x\tan x - \int {{{\sec }^3}x{\text{d}}x + \int {\sec x{\text{d}}x} } \)
\( = \sec x\tan x - \int {{{\sec }^3}x{\text{d}}x + \ln (\sec x + \tan x)} \) A1
\(2\int {{{\sec }^3}x{\text{d}}x = \left( {\sec x\tan x + \ln (\sec x + \tan x)} \right)} \) A1
therefore
\(\int {{{\sec }^3}x{\text{d}}x = \frac{1}{2}\left( {\sec x\tan x + \ln (\sec x + \tan x)} \right) + C} \) AG
[4 marks]
\({\text{int factor}} = {{\text{e}}^{\int {\tan x{\text{d}}x} }}\) (M1)
\( = {{\text{e}}^{\ln \sec x}}\) (A1)
\( = \sec x\) A1
the differential equation can be written as
\(\frac{{\text{d}}}{{{\text{d}}x}}(y\sec x) = 2{\sec ^3}x\) M1A1
integrating,
\(y\sec x = \sec x\tan x + \ln (\sec x + \tan x) + C\) A1
putting \(x = 0,{\text{ }}y = 1,\) M1
\(C = 1\) A1
the solution is \(y = \cos x\left( {\sec x\tan x + \ln (\sec x + \tan x) + 1} \right)\) A1
[??? marks]
differentiating the differential equation,
\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + \frac{{{\text{d}}y}}{{{\text{d}}x}}\tan x + y{\sec ^2}x = 4{\sec ^2}x\tan x\) A1A1
\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + (2{\sec ^2}x - y\tan x)\tan x + y{\sec ^2}x = 4{\sec ^2}x\tan x\) A1
\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y = 2{\sec ^2}x\tan x\) AG
[??? marks]
at a point of inflection, \(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 0\) so \(y = 2{\sec ^2}x\tan x\) (M1)
therefore the point of inflection can be found as the point of intersection of the graphs of \(y = \cos x\left( {\sec x\tan x + \ln (\sec x + \tan x) + 1} \right)\)
and \(y = 2{\sec ^2}x\tan x\) (M1)
drawing these graphs on the calculator, \(x = 0.605\) A2
[??? marks]