DP Mathematical Studies Questionbank
Compound statements: implication, \( \Rightarrow \) ; equivalence, \( \Leftrightarrow \) ; negation, \(\neg \) ; conjunction, \( \wedge \) ; disjunction, \( \vee \) ; exclusive disjunction, \(\underline \vee \) .
Path: |
Description
[N/A]Directly related questions
- 18M.1.sl.TZ2.2c: State whether \(\left( {q \wedge r} \right) \Rightarrow \neg p\) is a tautology, contradiction or...
- 18M.1.sl.TZ2.2b: Complete the following truth table.
- 18M.1.sl.TZ2.2a: Write down, in words, \(\left( {q \wedge r} \right) \Rightarrow \neg p\).
- 17N.1.sl.TZ0.4c: State whether the statement \(\neg p \Rightarrow \neg (q \vee \neg r)\) is the inverse, the...
- 17N.1.sl.TZ0.4b: Complete the truth table.
- 17N.1.sl.TZ0.4a: Write down in words \((q \vee \neg r) \Rightarrow p\).
- 16N.2.sl.TZ0.6f: Using your answer to part (e), find the value of \(r\) which minimizes \(A\).
- 10M.1.sl.TZ1.3b: Decide whether the compound...
- 11N.1.sl.TZ0.3b.i: State whether the statement \((p \wedge q) \Rightarrow (\neg p \underline \vee q)\) is a logical...
- 09M.1.sl.TZ1.2a: Write in words the compound proposition \(p \Rightarrow q\) ;
- 09M.1.sl.TZ1.2b: Write in words the compound proposition \(\neg p \vee q\).
- 09M.2.sl.TZ2.4ii, a: Write in words \((q \wedge \neg r) \Rightarrow \neg p\).
- 07M.1.sl.TZ0.4a: Explain the distinction between the compound propositions,...
- 07M.1.sl.TZ0.7b: Consider the propositions: p : x is a prime number less than 10. q : x is a positive integer...
- SPM.1.sl.TZ0.10a: Express in words the statement, \(s \Rightarrow q\) .
- 07N.1.sl.TZ0.7b: Write in words \(s \Rightarrow \neg d\) .
- 07N.1.sl.TZ0.7c: Complete the following truth table.
- 07N.1.sl.TZ0.7a: Write the sentence above using logic symbols.
- 08N.1.sl.TZ0.4b: Write down in words the meaning of the symbolic statement \(\neg (p \vee q)\).
- 08N.1.sl.TZ0.4c: Write in symbolic form the compound statement: “no food and no drinks may be taken into the...
- 08N.1.sl.TZ0.4a: Complete the truth table below for the symbolic statement \(\neg (p \vee q)\) .
- 08M.1.sl.TZ1.6a: Write in words, \(p \underline { \vee } q\).
- 08M.1.sl.TZ1.6b: Write in words, the converse of \(p \Rightarrow \neg q\).
- 08M.1.sl.TZ1.6c: Complete the following truth table for \(p \Rightarrow \neg q\).
- 08M.1.sl.TZ2.1b: Consider the following propositions. \(p:{\text{ Amy eats sweets}}\) ...
- 15M.1.sl.TZ2.11b: Write down in symbolic form the compound statement \(r:\) If \(x\) is a multiple of \(12\), then...
- 15M.1.sl.TZ2.11c: Consider the compound statement \(s:\) If \(x\) is a multiple of \(6\), then \(x\) is a multiple...
- 15M.1.sl.TZ2.11d: Consider the compound statement \(s:\) If \(x\) is a multiple of \(6\), then \(x\) is a multiple...
- 15M.1.sl.TZ2.5a: Complete the following truth table.
- 15M.1.sl.TZ2.11a: Write down in words \(\neg p\).
- 15M.2.sl.TZ1.2a: Write the following argument in symbolic form. “If the land has been purchased and the building...
- 15M.2.sl.TZ1.2d: Write down the inverse of the argument in part (a) (i) in symbolic form; (ii) in words.
- 14N.1.sl.TZ0.5a: Write down in words, the inverse of \(p \Rightarrow q\).