User interface language: English | Español

Date November 2015 Marks available 3 Reference code 15N.2.sl.TZ0.5
Level SL only Paper 2 Time zone TZ0
Command term Find Question number 5 Adapted from N/A

Question

Let \(C\) and \(D\) be independent events, with \({\text{P}}(C) = 2k\) and \({\text{P}}(D) = 3{k^2}\), where \(0 < k < 0.5\).

Write down an expression for \({\text{P}}(C \cap D)\) in terms of \(k\).

[2]
a.

Given that \({\text{P}}(C \cap D) = 0.162\) find \(k\).

[2]
b.

Find \({\text{P}}(C'|D)\).

[3]
c.

Markscheme

\({\text{P}}(C \cap D) = 2k \times 3{k^2}\)     (A1)

\({\text{P}}(C \cap D) = 6{k^3}\)     A1     N2

[2 marks]

a.

their correct equation     (A1)

eg\(\;\;\;2k \times 3{k^2} = 0.162,{\text{ }}6{k^3} = 0.162\)

\(k = 0.3\)     A1     N2

b.

METHOD 1

finding their \({\text{P}}(C' \cap D)\) (seen anywhere)     (A1)

eg  \(0.4 \times 0.27,0.27 - 0.162,0.108\)

correct substitution into conditional probability formula     (A1)

eg\(\;\;\;{\text{P}}(C'|D) = \frac{{{\text{P}}(C' \cap D)}}{{0.27}},{\text{ }}\frac{{(1 - 2k)(3{k^2})}}{{3{k^2}}}\)

\({\text{P}}(C'|D) = 0.4\)     A1     N2

METHOD 2

recognizing \({\text{P}}(C'|D) = {\text{P}}(C')\)     A1

finding their \({\text{P}}(C') = 1 - {\text{P}}(C)\) (only if first line seen)     (A1)

eg\(\;\;\;1 - 2k,{\text{ }}1 - 0.6\)

\({\text{P}}(C'|D) = 0.4\)     A1     N2

[3 marks]

Total [7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Statistics and probability » 5.5 » The complementary events \(A\) and \({A'}\) (not \(A\)).
Show 23 related questions

View options