Processing math: 100%

User interface language: English | Español

Date May 2009 Marks available 4 Reference code 09M.1.sl.TZ2.8
Level SL only Paper 1 Time zone TZ2
Command term Find Question number 8 Adapted from N/A

Question

Let f(x)=e3x and g(x)=sin(xπ3) .

Write down

(i)     f(x) ;

(ii)    g(x) .

[2]
a.

Let h(x)=e3xsin(xπ3) . Find the exact value of h(π3) .

[4]
b.

Markscheme

(i) 3e3x     A1     N1

(ii) cos(xπ3)     A1     N1

[4 marks]

a.

evidence of choosing product rule     (M1)

e.g. uv+vu

correct expression     A1

e.g. 3e3xsin(xπ3)+e3xcos(xπ3)

complete correct substitution of x=π3     (A1)

e.g. 3e3π3sin(π3π3)+e3π3cos(π3π3)        

h(π3)=eπ     A1     N3

[4 marks]

b.

Examiners report

A good number of candidates found the correct derivative expressions in (a). Many applied the product rule, although with mixed success.

a.

Often the substitution of π3 was incomplete or not done at all.

b.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.2 » Exact values of trigonometric ratios of 0, π6, π4, π3, π2 and their multiples.

View options