Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date May 2019 Marks available 6 Reference code 19M.2.SL.TZ2.S_7
Level Standard Level Paper Paper 2 Time zone Time zone 2
Command term Find Question number S_7 Adapted from N/A

Question

The vector equation of line L is given by r =(138)+t(451).

Point P is the point on L that is closest to the origin. Find the coordinates of P.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1 (Distance between the origin and P)

correct position vector for OP       (A1)

eg  OP=(1+4t3+5t8t)P=(1+4t,3+5t,8t)

correct expression for OP or OP2 (seen anywhere)       A1

eg   (1+4t)2+(3+5t)2+(8t)2(1+4x)2+(3+5x)2+(8x)2

valid attempt to find the minimum of OP       (M1)

eg   d=0, root on sketch of d,  min indicated on sketch of d

t=114,0.0714285      (A1)

substitute their value of t into L (only award if there is working to find t)       (M1)

eg   one correct coordinate,  1+4(114)

(1.28571,2.64285,8.07142)

(97,3714,11314)=(1.29,2.64,8.07)       A1  N2

 

METHOD 2 (Perpendicular vectors)

recognizing that closest implies perpendicular     (M1)

eg  OPL  (may be seen on sketch), ab=0

valid approach involving OP       (M1)

eg   OP=(1+4t3+5t8t),(451)OP,(451)OP

correct scalar product        A1

eg   4(1+4t)+5(3+5t)1(8t) ,  4+16t+15+25t8+t=0,  42t+3

t=114,0.0714285      (A1)

substitute their value of t into L or OP (only award if scalar product used to find t)      (M1)

eg   one correct coordinate,  1+4(114)

(1.28571,2.64285,8.07142)

(97,3714,11314)=(1.29,2.64,8.07)       A1  N2

 

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3—Geometry and trigonometry » AHL 3.11—Vector equation of a line in 2d and 3d
Show 51 related questions
Topic 3—Geometry and trigonometry » AHL 3.13—Scalar and vector products
Topic 3—Geometry and trigonometry

View options