User interface language: English | Español

Date May 2019 Marks available 4 Reference code 19M.1.SL.TZ1.S_2
Level Standard Level Paper Paper 1 Time zone Time zone 1
Command term Find Question number S_2 Adapted from N/A

Question

A line,  L 1 , has equation  r = ( 3 9 10 ) + s ( 6 0 2 ) . Point P ( 15 , 9 , c ) lies on  L 1 .

Find c .

[4]
a.

A second line, L 2 , is parallel to L 1 and passes through (1, 2, 3).

Write down a vector equation for  L 2 .

[2]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

correct equation       (A1)

eg      3 + 6 s = 15 ,   6 s = 18

s = 3              (A1)

substitute their s value into z component             (M1)

eg    10 + 3 ( 2 ) 10 + 6

c = 16      A1 N3

[4 marks]

a.

r = ( 1 2 3 ) + t ( 6 0 2 ) (=(i + 2j + 3k) + t (6i + 2k))     A2 N2

Note: Accept any scalar multiple of  ( 6 0 2 ) for the direction vector.

Award A1 for  ( 1 2 3 ) + t ( 6 0 2 ) , A1 for  L 2 = ( 1 2 3 ) + t ( 6 0 2 ) A0 for r = ( 6 0 2 ) + t ( 1 2 3 ) .

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3—Geometry and trigonometry » AHL 3.11—Vector equation of a line in 2d and 3d
Show 51 related questions
Topic 3—Geometry and trigonometry

View options