Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date November 2017 Marks available 5 Reference code 17N.1.SL.TZ0.S_9
Level Standard Level Paper Paper 1 Time zone Time zone 0
Command term Find Question number S_9 Adapted from N/A

Question

A line L passes through points A(3, 4, 2) and B(1, 3, 3).

The line L also passes through the point C(3, 1, p).

Show that AB=(211).

[1]
a.i.

Find a vector equation for L.

[2]
a.ii.

Find the value of p.

[5]
b.

The point D has coordinates (q2, 0, q). Given that DC is perpendicular to L, find the possible values of q.

[7]
c.

Markscheme

correct approach     A1

 

eg(133)(342), (342)+(133)

 

AB=(211)    AG     N0

[1 mark]

a.i.

any correct equation in the form r=a+tb (any parameter for t)

 

where a is (342) or (133) and b is a scalar multiple of (211)     A2     N2

 

egr=(342)+t(211), (x, y, z)=(1, 3, 3)+s(2, 1, 1), r=(3+2t4t2+t)

 

Note:     Award A1 for the form a+tb, A1 for the form L=a+tb, A0 for the form r=b+ta.

 

[2 marks]

a.ii.

METHOD 1 – finding value of parameter

valid approach     (M1)

 

eg(342)+t(211)=(31p), (1, 3, 3)+s(2, 1, 1)=(3, 1, p)

 

one correct equation (not involving p)     (A1)

eg3+2t=3, 12s=3, 4t=1, 3+s=1

correct parameter from their equation (may be seen in substitution)     A1

egt=3, s=2

correct substitution     (A1)

 

eg(342)+3(211)=(31p), 3(2)

 

p=5(accept (315))     A1     N2

 

METHOD 2 – eliminating parameter

valid approach     (M1)

 

eg(342)+t(211)=(31p), (1, 3, 3)+s(2, 1, 1)=(3, 1, p)

 

one correct equation (not involving p)     (A1)

eg3+2t=3, 12s=3, 4t=1, 3+s=1

correct equation (with p)     A1

eg2+t=p, 3s=p

correct working to solve for p     (A1)

eg7=2p3, 6=1+p

 

p=5(accept (315))     A1     N2

 

[5 marks]

b.

valid approach to find DC or CD     (M1)

 

eg(315)(q20q), (q20q)(315), (q20q)(31p)

 

correct vector for DC or CD (may be seen in scalar product)     A1

 

eg(3q215q), (q231q5), (3q21pq)

 

recognizing scalar product of DC or CD with direction vector of L is zero (seen anywhere)     (M1)

 

eg(3q21pq)(211)=0, DCAC=0, (3q215q)(211)=0

 

correct scalar product in terms of only q     A1

eg62q21+5q, 2q2+q10=0, 2(3q2)1+5q

correct working to solve quadratic     (A1)

eg(2q+5)(q2), 1±14(2)(10)2(2)

q=52, 2     A1A1     N3

 

[7 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3—Geometry and trigonometry » AHL 3.11—Vector equation of a line in 2d and 3d
Show 51 related questions
Topic 3—Geometry and trigonometry

View options