Processing math: 100%

User interface language: English | Español

Date May 2017 Marks available 4 Reference code 17M.2.AHL.TZ1.H_4
Level Additional Higher Level Paper Paper 2 Time zone Time zone 1
Command term Write down Question number H_4 Adapted from N/A

Question

The region A is enclosed by the graph of y=2arcsin(x1)π4, the y-axis and the line y=π4.

Write down a definite integral to represent the area of A.

[4]
a.

Calculate the area of A.

[2]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

2arcsin(x1)π4=π4     (M1)

x=1+12(=1.707)     (A1)

1+120π4(2arcsin(x1)π4)dx   M1A1

 

Note:     Award M1 for an attempt to find the difference between two functions, A1 for all correct.

 

METHOD 2

when x=0, y=5π4(=3.93)     A1

x=1+sin(4y+π8)    M1A1

 

Note:     Award M1 for an attempt to find the inverse function.

 

π45π4(1+sin(4y+π8))dy     A1

METHOD 3

1.38...0(2arcsin(x1)π4)dx|+1.71...0π4dx1.71...1.38...(2arcsin(x1)π4)dx    M1A1A1A1

 

Note:     Award M1 for considering the area below the x-axis and above the x-axis and A1 for each correct integral.

 

[4 marks]

a.

area=3.30 (square units)     A2

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5—Calculus » AHL 5.12—Areas under a curve onto x or y axis. Volumes of revolution about x and y
Show 66 related questions
Topic 5—Calculus

View options