User interface language: English | Español

Date May 2018 Marks available 5 Reference code 18M.1.AHL.TZ2.H_11
Level Additional Higher Level Paper Paper 1 Time zone Time zone 2
Command term Express Question number H_11 Adapted from N/A

Question

It is given that  lo g 2 y + lo g 4 x + lo g 4 2 x = 0 .

Show that lo g r 2 x = 1 2 lo g r x  where  r , x R + .

[2]
a.

Express  y in terms of  x . Give your answer in the form y = p x q , where p , q are constants.

[5]
b.

The region R, is bounded by the graph of the function found in part (b), the x-axis, and the lines  x = 1 and  x = α where  α > 1 . The area of R is  2 .

Find the value of  α .

[5]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

lo g r 2 x = lo g r x lo g r r 2 ( = lo g r x 2 lo g r r )      M1A1

= lo g r x 2      AG

[2 marks]

 

METHOD 2

lo g r 2 x = 1 lo g x r 2      M1

= 1 2 lo g x r      A1

= lo g r x 2      AG

[2 marks]

 

a.

METHOD 1

lo g 2 y + lo g 4 x + lo g 4 2 x = 0

lo g 2 y + lo g 4 2 x 2 = 0      M1

lo g 2 y + 1 2 lo g 2 2 x 2 = 0      M1

lo g 2 y = 1 2 lo g 2 2 x 2

lo g 2 y = lo g 2 ( 1 2 x )      M1A1

y = 1 2 x 1      A1

Note: For the final A mark,  y  must be expressed in the form  p x q .

[5 marks]

 

METHOD 2

lo g 2 y + lo g 4 x + lo g 4 2 x = 0

lo g 2 y + 1 2 lo g 2 x + 1 2 lo g 2 2 x = 0      M1

lo g 2 y + lo g 2 x 1 2 + lo g 2 ( 2 x ) 1 2 = 0      M1

lo g 2 ( 2 x y ) = 0      M1

2 x y = 1      A1

y = 1 2 x 1      A1

Note: For the final A mark,  y  must be expressed in the form  p x q .

[5 marks]

 

b.

the area of R is  1 α 1 2 x 1 d x      M1

= [ 1 2 ln x ] 1 α      A1

= 1 2 ln α      A1

1 2 ln α = 2      M1

α = e 2      A1

Note: Only follow through from part (b) if  y  is in the form  y = p x q

[5 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1—Number and algebra » SL 1.5—Intro to logs
Show 28 related questions
Topic 1—Number and algebra » AHL 1.9—Log laws
Topic 5—Calculus » AHL 5.12—Areas under a curve onto x or y axis. Volumes of revolution about x and y
Topic 1—Number and algebra
Topic 5—Calculus

View options