Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date November 2016 Marks available 3 Reference code 16N.2.AHL.TZ0.H_3
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Show that Question number H_3 Adapted from N/A

Question

A discrete random variable X follows a Poisson distribution Po(μ).

Show that P(X=x+1)=μx+1×P(X=x), xN.

[3]
a.

Given that P(X=2)=0.241667 and P(X=3)=0.112777, use part (a) to find the value of μ.

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

P(X=x+1)=μx+1(x+1)!eμ    A1

=μx+1×μxx!eμ    M1A1

=μx+1×P(X=x)    AG

METHOD 2

μx+1×P(X=x)=μx+1×μxx!eμ    A1

=μx+1(x+1)!eμ    M1A1

=P(X=x+1)    AG

METHOD 3

P(X=x+1)P(X=x)=μx+1(x+1)!eμμxx!eμ    (M1)

=μx+1μx×x!(x+1)!    A1

=μx+1    A1

and so P(X=x+1)=μx+1×P(X=x)     AG

[3 marks]

a.

P(X=3)=μ3P(X=2) (0.112777=μ30.241667)    A1

attempting to solve for μ     (M1)

μ=1.40    A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 4—Statistics and probability » SL 4.8—Binomial distribution
Show 139 related questions
Topic 4—Statistics and probability » AHL 4.17—Poisson distribution
Topic 4—Statistics and probability

View options