User interface language: English | Español

Date May Example question Marks available 1 Reference code EXM.2.AHL.TZ0.28
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term State Question number 28 Adapted from N/A

Question

The random variable X is thought to follow a binomial distribution B (4, p ). In order to investigate this belief, a random sample of 100 observations on X was taken with the following results.

An automatic machine is used to fill bottles of water. The amount delivered, Y  ml, may be assumed to be normally distributed with mean μ  ml and standard deviation 8 ml. Initially, the machine is adjusted so that the value of μ is 500. In order to check that the value of μ remains equal to 500, a random sample of 10 bottles is selected at regular intervals, and the mean amount of water, y ¯ , in these bottles is calculated. The following hypotheses are set up.

H0: μ  = 500;  H1: μ  ≠ 500

The critical region is defined to be  ( y ¯ < 495 ) ( y ¯ > 505 ) .

State suitable hypotheses for testing this belief.

[1]
a.i.

Calculate the mean of these data and hence estimate the value of p .

[5]
a.ii.

Calculate an appropriate value of χ 2  and state your conclusion, using a 1% significance level.

[13]
a.iii.

Find the significance level of this procedure.

[5]
b.i.

Some time later, the actual value of μ  is 503. Find the probability of a Type II error.

[3]
b.ii.

Markscheme

H: The data are B (4, p ); H1 : The data are not B (4, p )       A1

[1 mark]

a.i.

Mean  = 1 × 32 + + 4 × 14 100        M1A1

= 1.8       A1

4 p ^ = 1.8 p ^ = 0.45        M1A1

[5 marks]

a.ii.

The expected frequencies are

   A1A1A1A1A1

The last two classes must be combined because the expected frequency for x = 4 is less than 5.       R1

χ 2 = 17 2 9.15 + 32 2 29.95 + 19 2 36.75 + 32 2 24.15 100        M2

= 18.0        A2

DF = 2        (A1)

Critical value = 9.21        A1         

We conclude, at the 1% significance level, that X does not fit a binomial model.           R1         

 

Special case: award the following marks to candidates who do not combine classes.

χ 2 = 17 2 9.15 + 32 2 29.95 + 19 2 36.75 + 18 2 20.05 + 14 2 4.1 100        M2

= 39.6        A0

DF = 3        (A1)

Critical value = 11.345        A1         

We conclude, at the 1% significance level, that X does not fit a binomial model.           R1

 

[13 marks]

a.iii.

Under H0, the distribution of y ¯ is N (500, 6.4).      (A1)

Significance level = P y ¯  < 495 or > 505 | H0       M2

                             = 2 × 0.02405      (A1)

                             = 0.0481       A1 N5

[5 marks]

b.i.

The distribution of y ¯  is now N (503, 6.4).      (A1)

P(Type ΙΙ error) = P(495 < y ¯  < 505)      (M1)

                       = 0.785       A1 N3

[3 marks]

b.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 4—Statistics and probability » SL 4.8—Binomial distribution
Show 139 related questions
Topic 4—Statistics and probability » SL 4.11—Expected, observed, hypotheses, chi squared, gof, t-test
Topic 4—Statistics and probability » AHL 4.12—Data collection, reliability and validity tests
Topic 4—Statistics and probability » AHL 4.18—T and Z test, type I and II errors
Topic 4—Statistics and probability

View options