Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 6 Reference code 18M.1.AHL.TZ1.H_5
Level Additional Higher Level Paper Paper 1 Time zone Time zone 1
Command term Solve Question number H_5 Adapted from N/A

Question

Solve (lnx)2(ln2)(lnx)<2(ln2)2.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

(lnx)2(ln2)(lnx)2(ln2)2(=0)

EITHER

lnx=ln2±(ln2)2+8(ln2)22     M1

=ln2±3ln22     A1

OR

(lnx2ln2)(lnx+2ln2)(=0)     M1A1

THEN

lnx=2ln2 or ln2     A1

x=4 or x=12       (M1)A1   

Note: (M1) is for an appropriate use of a log law in either case, dependent on the previous M1 being awarded, A1 for both correct answers.

solution is 12<x<4     A1

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1—Number and algebra » SL 1.5—Intro to logs
Show 28 related questions
Topic 1—Number and algebra » AHL 1.9—Log laws
Topic 1—Number and algebra

View options