DP Mathematics: Analysis and Approaches Questionbank

AHL 3.9—Reciprocal trig ratios and their pythagorean identities. Inverse circular functions
Path: |
Description
[N/A]Directly related questions
-
EXN.1.AHL.TZ0.12e:
Deduce a quadratic equation with integer coefficients, having roots cosec2 π8 and cosec2 3π8.
-
21M.2.AHL.TZ1.9a:
Show that y=x+50 cot θ .
-
21M.1.AHL.TZ2.12b:
Show that arctan p+arctan q≡arctan(p+q1-pq) where p, q>0 and pq<1.
-
21M.1.AHL.TZ2.12c:
Verify that arctan (2x+1)=arctan (xx+1)+π4 for x∈ℝ, x>0.
-
21M.2.AHL.TZ2.12b:
By considering limits, show that the graph of y=f(x) has a horizontal asymptote and state its equation.
-
21M.2.AHL.TZ2.12f:
Sketch the graph of y=g-1(x), clearly indicating any asymptotes with their equations and stating the values of any axes intercepts.
-
21M.2.AHL.TZ2.12c.ii:
By using the expression for f'(x) and the result √x2=|x|, show that f is decreasing for x<0.
-
21M.2.AHL.TZ2.12c.i:
Show that f'(x)=2x√x2(x2+1) for x∈ℝ, x≠0.
-
21M.2.AHL.TZ2.12d:
Find an expression for g-1(x), justifying your answer.
-
21M.2.AHL.TZ2.12e:
State the domain of g-1.
-
21M.2.AHL.TZ2.12a:
Show that f is an even function.
-
21N.2.AHL.TZ0.7a:
Determine the value of m.
-
21N.2.AHL.TZ0.7b:
Given that P(|X-m|≤a)=0.3, determine the value of a.
-
21M.1.AHL.TZ1.6:
It is given that cosec θ=32, where π2<θ<3π2. Find the exact value of cot θ.
-
22M.1.AHL.TZ2.7:
By using the substitution u=sec x or otherwise, find an expression for π3∫0secn x tan x dx in terms of n, where n is a non-zero real number.
-
22M.1.AHL.TZ2.11c:
Given that (h∘g)(a)=π4, find the value of a.
Give your answer in the form p+q2√r, where p, q, r∈ℤ+.
-
22M.2.AHL.TZ2.7b:
Using l’Hôpital’s rule, show algebraically that the value of the limit is -14.
-
22M.2.AHL.TZ2.7a:
Show that a finite limit only exists for k=π4.
-
SPM.2.AHL.TZ0.12b:
Verify that x=tanθ and x=−cotθ satisfy the equation x2+(2cot2θ)x−1=0.
-
SPM.2.AHL.TZ0.12a:
Show that cot2θ=1−tan2θ2tanθ.
-
SPM.3.AHL.TZ0.2g:
Use an appropriate trigonometric identity to show that fn+1(x)=cos(narccosx)cos(arccosx)−sin(narccosx)sin(arccosx).
-
SPM.3.AHL.TZ0.2c:
On a new set of axes, sketch the graphs of y=f2(x) and y=f4(x) for −1 ≤ x ≤ 1.
-
SPM.3.AHL.TZ0.2h.i:
Hence show that fn+1(x)+fn−1(x)=2xfn(x), n∈Z+.
-
SPM.3.AHL.TZ0.2d.i:
local maximum points;
-
SPM.3.AHL.TZ0.2h.ii:
Hence express f3(x) as a cubic polynomial.
-
SPM.3.AHL.TZ0.2b.i:
local maximum points;
-
SPM.3.AHL.TZ0.2b.ii:
local minimum points;
-
SPM.3.AHL.TZ0.2a:
On the same set of axes, sketch the graphs of y=f1(x) and y=f3(x) for −1 ≤ x ≤ 1.
-
SPM.3.AHL.TZ0.2f:
Use an appropriate trigonometric identity to show that f2(x)=2x2−1.
-
SPM.2.AHL.TZ0.12c:
Hence, or otherwise, show that the exact value of tanπ12=2−√3.
-
SPM.3.AHL.TZ0.2d.ii:
local minimum points.
-
SPM.2.AHL.TZ0.12d:
Using the results from parts (b) and (c) find the exact value of tanπ24−cotπ24.
Give your answer in the form a+b√3 where a, b∈Z.
-
SPM.3.AHL.TZ0.2e:
Solve the equation fn′(x)=0 and hence show that the stationary points on the graph of y=fn(x) occur at x=coskπn where k∈Z+ and 0 < k < n.
-
18N.1.AHL.TZ0.H_3a:
For a=−π2, sketch the graph of y=g(x). Indicate clearly the maximum and minimum values of the function.
-
18N.1.AHL.TZ0.H_3b:
Write down the least value of a such that g has an inverse.
-
18N.1.AHL.TZ0.H_3c.i:
For the value of a found in part (b), write down the domain of g−1.
-
18N.1.AHL.TZ0.H_3c.ii:
For the value of a found in part (b), find an expression for g−1(x).
-
16N.2.AHL.TZ0.H_5a:
Sketch the graph of f indicating clearly any intercepts with the axes and the coordinates of any local maximum or minimum points.
-
16N.2.AHL.TZ0.H_5b:
State the range of f.
-
16N.2.AHL.TZ0.H_5c:
Solve the inequality |3xarccos(x)|>1.
-
18N.1.AHL.TZ0.H_10c:
Find the x-coordinates of A and of C , giving your answers in the form a+arctanb, where a, b∈R.
-
18N.1.AHL.TZ0.H_10b:
Hence, show that ∫excos2xdx=ex5sin2x+ex10cos2x+ex2+c, c∈R.
-
18N.1.AHL.TZ0.H_10d:
Find the area enclosed by the curve and the x-axis between B and D, as shaded on the diagram.
-
18N.1.AHL.TZ0.H_10a:
Use integration by parts to show that ∫excos2xdx=2ex5sin2x+ex5cos2x+c, c∈R.
-
17M.1.AHL.TZ1.H_3:
Solve the equation sec2x+2tanx=0, 0⩽.