User interface language: English | Español

Date November Example questions Marks available 6 Reference code EXN.3.AHL.TZ0.2
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Show that Question number 2 Adapted from N/A

Question

A Gaussian integer is a complex number, z, such that z=a+bi where a,b. In this question, you are asked to investigate certain divisibility properties of Gaussian integers.

Consider two Gaussian integers, α=3+4i and β=1-2i, such that γ=αβ for some Gaussian integer γ.

Now consider two Gaussian integers, α=3+4i and γ=11+2i.

The norm of a complex number z, denoted by Nz, is defined by Nz=z2. For example, if z=2+3i then N2+3i=22+32=13.

A Gaussian prime is a Gaussian integer, z, that cannot be expressed in the form z=αβ where α,β are Gaussian integers with Nα,Nβ>1.

The positive integer 2 is a prime number, however it is not a Gaussian prime.

Let α,β be Gaussian integers.

The result from part (h) provides a way of determining whether a Gaussian integer is a Gaussian prime.

Find γ.

[2]
a.

Determine whether γα is a Gaussian integer.

[3]
b.

On an Argand diagram, plot and label all Gaussian integers that have a norm less than 3.

[2]
c.

Given that α=a+bi where a,b, show that Nα=a2+b2.

[1]
d.

By expressing the positive integer n=c2+d2 as a product of two Gaussian integers each of norm c2+d2, show that n is not a Gaussian prime.

[3]
e.

Verify that 2 is not a Gaussian prime.

[2]
f.

Write down another prime number of the form c2+d2 that is not a Gaussian prime and express it as a product of two Gaussian integers.

[2]
g.

Show that Nαβ=NαNβ.

[6]
h.

Hence show that 1+4i is a Gaussian prime.

[3]
i.

Use proof by contradiction to prove that a prime number, p, that is not of the form a2+b2 is a Gaussian prime.

[6]
j.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

3+4i1-2i=11-2i          (M1)A1 

 

[2 marks]

a.

γα=4125-3825i          (M1)A1 

(Since Reγα=4125 and/or Imγα=-3825 are not integers)

γα is not a Gaussian integer         R1

 

Note: Award R1 for correct conclusion from their answer.

 

[3 marks]

b.

±1,±i,0 plotted and labelled        A1

1±i,-1±i plotted and labelled        A1

 

Note: Award A1A0 if extra points to the above are plotted and labelled.

  

[2 marks]

c.

z=a2+b2  (and as Nz=z2)       A1

then N(α)=a2+b2        AG

   

[1 mark]

d.

c2+d2=c+dic-di       A1

and Nc+di=Nc-di=c2+d2       R1

Nc+di,Nc-di>1 (since c,d are positive)       R1

so c2+d2 is not a Gaussian prime, by definition        AG

   

[3 marks]

e.

2=12+12=1+i1-i       (A1)

N1+i=N1-i=2        A1

so 2 is not a Gaussian prime       AG

   

[2 marks]

f.

For example, 5=12+22=1+2i1-2i       (M1)A1

   

[2 marks]

g.

METHOD 1

Let α=m+ni and β=p+qi

LHS:

αβ=mp-nq+mq+npi        M1

Nαβ=mp-nq2+mq+np2       A1

mp2-2mnpq+nq2+mq2+2mnpq+np2       A1

mp2+nq2+mq2+np2       A1

RHS:

NαNβ=m2+n2p2+q2        M1

mp2+mq2+np2+nq2       A1

LHS = RHS and so Nαβ=NαNβ       AG

 

METHOD 2

Let α=m+ni and β=p+qi

LHS

Nαβ=m2+n2p2+q2        M1

=m+nim-nip+qip-qi       A1

=m+nip+qim-nip-qi

=mp-nq+mq+npimp-nq-mq+npi        M1A1

=mp-nq2+mq+np2       A1

N=mp-nq+mq+npi       A1

=NαNβ (= RHS)       AG

   

[6 marks]

h.

N1+4i=17 which is a prime (in )        R1

if 1+4i=αβ then 17=Nαβ=NαNβ        R1

we cannot have Nα,Nβ>1        R1

 

Note: Award R1 for stating that 1+4i is not the product of Gaussian integers of smaller norm because no such norms divide 17

 

so 1+4i is a Gaussian prime        AG

   

[3 marks]

i.

Assume p is not a Gaussian prime

p=αβ where α,β are Gaussian integers and Nα,Nβ>1         M1

Np=NαNβ         M1

p2=NαNβ        A1

It cannot be Nα=1,Nβ=p2 from definition of Gaussian prime        R1

hence Nα=p,Nβ=p        R1

If α=a+bi then Nα=a2+b2=p which is a contradiction        R1

hence a prime number, p, that is not of the form a2+b2 is a Gaussian prime        AG

 

[6 marks]

j.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.
[N/A]
h.
[N/A]
i.
[N/A]
j.

Syllabus sections

Topic 1—Number and algebra » SL 1.6—Simple proof
Show 41 related questions
Topic 1—Number and algebra » AHL 1.13—Polar and Euler form
Topic 1—Number and algebra

View options