User interface language: English | Español

Date May Specimen paper Marks available 2 Reference code SPM.1.SL.TZ0.3
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Show that Question number 3 Adapted from N/A

Question

Show that  ( 2 n 1 ) 2 + ( 2 n + 1 ) 2 = 8 n 2 + 2 , where n Z .

[2]
a.

Hence, or otherwise, prove that the sum of the squares of any two consecutive odd integers is even.

[3]
b.

Markscheme

attempting to expand the LHS   (M1)

LHS  = ( 4 n 2 4 n + 1 ) + ( 4 n 2 + 4 n + 1 )      A1

= 8 n 2 + 2 (= RHS)    AG

[2 marks]

a.

METHOD 1

recognition that  2 n 1 and  2 n + 1  represent two consecutive odd integers (for  n Z )      R1

8 n 2 + 2 = 2 ( 4 n 2 + 1 )      A1

valid reason eg divisible by 2 (2 is a factor)       R1

so the sum of the squares of any two consecutive odd integers is even        AG

 

METHOD 2

recognition, eg that n and  n + 2  represent two consecutive odd integers (for  n Z )       R1

n 2 + ( n + 2 ) 2 = 2 ( n 2 + 2 n + 2 )      A1

valid reason eg divisible by 2 (2 is a factor)       R1

so the sum of the squares of any two consecutive odd integers is even        AG

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1—Number and algebra » SL 1.6—Simple proof
Show 41 related questions
Topic 1—Number and algebra

View options