User interface language: English | Español

Date May Example questions Marks available 2 Reference code EXM.1.SL.TZ0.1
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Explain Question number 1 Adapted from N/A

Question

Explain why any integer can be written in the form  4 k or  4 k + 1 or  4 k + 2 or  4 k + 3 , where k Z .

[2]
a.

Hence prove that the square of any integer can be written in the form  4 t or  4 t + 1 , where t Z + .

[6]
b.

Markscheme

Upon division by 4        M1

any integer leaves a remainder of 0, 1, 2 or 3.      R1

Hence, any integer can be written in the form  4 k or  4 k + 1 or  4 k + 2 or  4 k + 3 , where  k Z       AG

[2 marks]

a.

( 4 k ) 2 = 16 k 2 = 4 t         M1A1

( 4 k + 1 ) 2 = 16 k 2 + 8 k + 1 = 4 t + 1         M1A1

( 4 k + 2 ) 2 = 16 k 2 + 16 k + 4 = 4 t       A1

( 4 k + 3 ) 2 = 16 k 2 + 24 k + 9 = 4 t + 1       A1

Hence, the square of any integer can be written in the form  4 t or  4 t + 1 , where  t Z + .      AG

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1—Number and algebra » SL 1.6—Simple proof
Show 41 related questions
Topic 1—Number and algebra

View options