Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

User interface language: English | Español

Date November Example questions Marks available 8 Reference code EXN.1.AHL.TZ0.9
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Prove Question number 9 Adapted from N/A

Question

It is given that 2cosAsinBsin(A+B)-sin(A-B). (Do not prove this identity.)

Using mathematical induction and the above identity, prove that nΣr=1cos(2r-1)θ=sin2nθ2sinθ for n+.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

let P(n) be the proposition that nΣr=1cos(2r-1)θ=sin2nθ2sinθ for n+

considering P(1):

LHS=cos(1)θ=cosθ and RHS=sin2θ2sinθ=2sinθcosθ2sinθ=cosθ=LHS

so P(1) is true        R1

assume P(k) is true, i.e. kΣr=1cos(2r-1)θ=sin2kθ2sinθ (k+)        M1

 

Note: Award M0 for statements such as “let n=k”.

Note: Subsequent marks after this M1 are independent of this mark and can be awarded.

 

considering P(k+1)

k+1Σr=1cos(2r-1)θ=kΣr=1cos(2r-1)θ+cos(2(k+1)-1)θ        M1

=sin2kθ2sinθ +cos(2(k+1)-1)θ        A1

=sin2kθ+2cos((2k+1)θ)sinθ2sinθ 

=sin2kθ+sin((2k+1)θ+θ)-sin((2k+1)θ-θ)2sinθ         M1

 

Note: Award M1 for use of 2cosAsinB=sin(A+B)-sin(A-B) with A=(2k+1)θ and B=θ.

 

=sin2kθ+sin(2k+2)θ-sin2kθ2sinθ         A1

=sin2(k+1)θ2sinθ         A1

P(k+1) is true whenever P(k) is true, P(1) is true, so P(n) is true for n+        R1

 

Note: Award the final R1 mark provided at least five of the previous marks have been awarded.

 

[8 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1—Number and algebra » AHL 1.15—Proof by induction, contradiction, counterexamples
Show 28 related questions
Topic 1—Number and algebra

View options