User interface language: English | Español

Date May 2018 Marks available 7 Reference code 18M.2.AHL.TZ2.H_6
Level Additional Higher Level Paper Paper 2 Time zone Time zone 2
Command term Question number H_6 Adapted from N/A

Question

Use mathematical induction to prove that  ( 1 a ) n > 1 n a for  { n : n Z + , n 2 } where 0 < a < 1 .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

Let  P n  be the statement:  ( 1 a ) n > 1 n a for some  n Z + , n 2 where  0 < a < 1  consider the case  n = 2 : ( 1 a ) 2 = 1 2 a + a 2      M1

> 1 2 a because  a 2 < 0 . Therefore  P 2 is true     R1

assume  P n is true for some  n = k

( 1 a ) k > 1 k a      M1

Note: Assumption of truth must be present. Following marks are not dependent on this M1.

EITHER

consider  ( 1 a ) k + 1 = ( 1 a ) ( 1 a ) k      M1

> 1 ( k + 1 ) a + k a 2       A1

> 1 ( k + 1 ) a P k + 1 is true (as k a 2 > 0 )     R1

OR

multiply both sides by  ( 1 a ) (which is positive)      M1

( 1 a ) k + 1 > ( 1 k a ) ( 1 a )

( 1 a ) k + 1 > 1 ( k + 1 ) a + k a 2      A1

( 1 a ) k + 1 > 1 ( k + 1 ) a P k + 1  is true (as  k a 2 > 0 )     R1

THEN

P 2 is true  P k is true  P k + 1 is true so  P n true for all  n > 2  (or equivalent)      R1

Note: Only award the last R1 if at least four of the previous marks are gained including the A1.

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1—Number and algebra » AHL 1.15—Proof by induction, contradiction, counterexamples
Show 28 related questions
Topic 1—Number and algebra

View options